拡張多重階乗の漸化式
拡張多重階乗の漸化式
\[ x!^{n}=x\left(x-n\right)!^{n} \]
\[ x!^{n}=x\left(x-n\right)!^{n} \]
*
\(x!^{n}\)は拡張多重階乗。\begin{align*}
x!^{n} & =n^{\frac{x-1}{n}}\frac{\left(\frac{x}{n}\right)!}{\left(\frac{1}{n}\right)!}\\
& =n^{\frac{x-1}{n}}\frac{\frac{x}{n}\left(\frac{x}{n}-1\right)!}{\left(\frac{1}{n}\right)!}\\
& =xn^{\frac{\left(x-n\right)-1}{n}}\frac{\left(\frac{x-n}{n}\right)!}{\left(\frac{1}{n}\right)!}\\
& =x\left(x-n\right)!^{n}
\end{align*}
ページ情報
タイトル | 拡張多重階乗の漸化式 |
URL | https://www.nomuramath.com/r6tuj7qd/ |
SNSボタン |
多重階乗と拡張多重階乗の定義
\[
\left(x\right)!^{n}=n^{\frac{x-1}{n}}\frac{\left(\frac{x}{n}\right)!}{\left(\frac{1}{n}\right)!}
\]
拡張多重階乗の簡単な値
\[
0!^{n}=\frac{1}{\sqrt[n]{n}\left(\frac{1}{n}\right)!}
\]
2重階乗の逆数和
\[
\sum_{k=0}^{n}\frac{1}{\left(2k\right)!!}=\sqrt{e}\frac{\Gamma\left(n+1,\frac{1}{2}\right)}{\Gamma\left(n+1\right)}
\]
負の多重階乗
\[
\left(-\left(qn+r\right)\right)!_{n}=\frac{\left(-1\right)^{q}}{\left(qn-\left(n-r\right)\right)!_{n}}
\]