数列が収束するならば有界
数列が収束するならば有界
数列が収束するならば有界である。
逆は一般的に成り立たない。
数列が収束するならば有界である。
逆は一般的に成り立たない。
\(\Rightarrow\)
数列\(\left(a_{n}\right)_{n\in\mathbb{N}}\)が\(a\)に収束するとする。このとき、
\[ \forall\epsilon>0,\exists N\in\mathbb{N},N\leq n\rightarrow\left|a_{n}-a\right|<\epsilon \] となるので、任意の\(\epsilon>0\)に対し、ある\(N\in\mathbb{N}\)が存在し、\(N\leq n\)のとき、\(\left|a_{n}-a\right|<\epsilon\)より\(a-\epsilon<a_{n}<a+\epsilon\)となるので\(a_{n}\)は有界となる。
また、\(n<N\)のときは、\(\min\left\{ a_{n}\right\} _{n<N}\leq a_{n}\leq\max\left\{ a_{n}\right\} _{n<N}\)となるので\(a_{n}\)は有界となる。
これより、任意の\(m\in\mathbb{N}\)に対し、\(\min\left\{ \min\left\{ a_{n}\right\} _{n<N},a-\epsilon\right\} \leq a_{m}\leq\max\left\{ \max\left\{ a_{n}\right\} _{n<N},a+\epsilon\right\} \)となるので\(a_{m}\)は有界となる。
従って\(\Rightarrow\)が成り立つ。
逆は一般的に成り立たない
反例で示す。\(a_{n}=\left(-1\right)^{n}\)とすると有界であるが収束しない。
故に逆は一般的に成り立たない。
ページ情報
タイトル | 数列が収束するならば有界 |
URL | https://www.nomuramath.com/rgn3p89c/ |
SNSボタン |
実数列の上極限と下極限の定義
\[
\limsup_{n\rightarrow\infty}a_{n}:=\lim_{n\rightarrow\infty}\sup_{k\geq n}a_{k}
\]
収束列ならばコーシー列
収束列ならばコーシー列となるが逆は一般に成り立たない。
単調減少数列・単調増加数列の極限・上限・下限は存在
級数が収束するならチェザロ平均の極限は存在
\[
\exists a\in\left[-\infty,\infty\right],\lim_{n\rightarrow\infty}a_{n}=a\rightarrow\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{k=1}^{n}a_{k}=a
\]