三角関数の還元(負角・余角・補角)公式
三角関数の還元公式
負角
余角
補角
負角
(1)
\[ \sin(-x)=-\sin x \](2)
\[ \cos(-x)=\cos x \](3)
\[ \tan(-x)=-\tan x \]余角
(4)
\[ \sin\left(\frac{\pi}{2}-x\right)=\cos x \](5)
\[ \cos\left(\frac{\pi}{2}-x\right)=\sin x \](6)
\[ \tan\left(\frac{\pi}{2}-x\right)=\cot x \]補角
(7)
\[ \sin\left(\pi-x\right)=\sin x \](8)
\[ \cos\left(\pi-x\right)=-\cos x \](9)
\[ \tan\left(\pi-x\right)=-\tan x \](1)
\begin{align*} \sin(-x) & =\frac{e^{-ix}-e^{ix}}{2i}\\ & =-\frac{e^{ix}-e^{-ix}}{2i}\\ & =-\sin x \end{align*}(2)
\begin{align*} \cos(-x) & =\frac{e^{-ix}+e^{ix}}{2}\\ & =\cos x \end{align*}(3)
\begin{align*} \tan(-x) & =\frac{\sin(-x)}{\cos(-x)}\\ & =\frac{-\sin(x)}{\cos x}\\ & =-\tan x \end{align*}(4)
\begin{align*} \sin\left(\frac{\pi}{2}-x\right) & =\sin\frac{\pi}{2}\cos x-\cos\frac{\pi}{2}\sin x\\ & =\cos x \end{align*}(5)
\begin{align*} \cos\left(\frac{\pi}{2}-x\right) & =\cos\frac{\pi}{2}\cos x+\sin\frac{\pi}{2}\sin x\\ & =\sin x \end{align*}(6)
\begin{align*} \tan\left(\frac{\pi}{2}-x\right) & =\frac{\sin\left(\frac{\pi}{2}-x\right)}{\cos\left(\frac{\pi}{2}-x\right)}\\ & =\frac{\cos x}{\sin x}\\ & =\cot x \end{align*}(7)
\begin{align*} \sin\left(\pi-x\right) & =\sin\pi\cos x-\cos\pi\sin x\\ & =\sin x \end{align*}(8)
\begin{align*} \cos\left(\pi-x\right) & =\cos\pi\cos x+\sin\pi\sin x\\ & =-\cos x \end{align*}(9)
\begin{align*} \tan\left(\pi-x\right) & =\frac{\sin(\pi-x)}{\cos(\pi-x)}\\ & =\frac{\sin x}{-\cos x}\\ & =-\tan x \end{align*}ページ情報
タイトル | 三角関数の還元(負角・余角・補角)公式 |
URL | https://www.nomuramath.com/rj4agkrd/ |
SNSボタン |
三角関数と双曲線関数の積分
\[
\int\cos xdx=\sin x
\]
三角関数(双曲線関数)の逆三角関数(逆双曲線関数)が恒等写像になる条件
\[
\sin^{\bullet}\sin z=?z
\]
三角関数と双曲線関数の加法定理
\[
\sin(x\pm y)=\sin x\cos y\pm\cos x\sin y
\]
逆三角関数と逆双曲線関数の積分
\[
\int\sin^{\bullet}xdx=x\sin^{\bullet}x+\sqrt{1-x^{2}}
\]