tanの立方根の積分
tanの立方根の積分
\[ \int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C \]
\[ \int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C \]
\begin{align*}
\int\sqrt[3]{\tan x}dx & =3\int\frac{t^{3}}{t^{6}+1}dt\cmt{t=\sqrt[3]{\tan x}}\\
& =\frac{3}{2}\int\frac{u}{u^{3}+1}du\cmt{u=t^{2}}\\
& =\frac{1}{2}\int\left(\frac{u+1}{u^{2}-u+1}-\frac{1}{u+1}\right)du\\
& =\frac{1}{2}\int\left(\frac{\frac{1}{2}(u^{2}-u+1)'}{u^{2}-u+1}+\frac{\frac{3}{2}}{u^{2}-u+1}-\frac{1}{u+1}\right)du\\
& =\frac{1}{2}\int\left(\frac{\frac{1}{2}(u^{2}-u+1)'}{u^{2}-u+1}+\frac{\frac{3}{2}}{\left(u-\frac{1}{2}\right)^{2}+\frac{3}{4}}-\frac{1}{u+1}\right)du\\
& =\frac{1}{4}\log\left(u^{2}-u+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2u-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left|u+1\right|+C\\
& =\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C
\end{align*}
ページ情報
タイトル | tanの立方根の積分 |
URL | https://www.nomuramath.com/rnqo16ad/ |
SNSボタン |
分母に正接がある関数の定積分
\[
\int_{0}^{\frac{\pi}{2}}\frac{x}{\tan x}dx=?
\]
分子が対数で分母が多項式の定積分
\[
\int_{0}^{\infty}\frac{\log x}{x^{n}+1}dx=?
\]
πとγがでてくる定積分
\[
\int_{0}^{\infty}\frac{\sin\left(x\right)\log\left(x\right)}{x}dx=?
\]
複雑な2重根号を含む定積分
\[
\int_{-\frac{1}{2}}^{\frac{1}{2}}\sqrt{x^{2}+1+\sqrt{x^{4}+x^{2}+1}}dx=?
\]