ウォリスの公式
ウォリスの公式
\[ \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2} \]
\[ \prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2} \]
\begin{align*}
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right) & =\prod_{k=1}^{\infty}\left(\frac{(2k-1)(2k+1)}{(2k)}\right)^{-1}\\
& =\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}-1}{(2k)^{2}}\right)^{-1}\\
& =\frac{\pi}{2}\left\{ \frac{\pi}{2}\prod_{k=1}^{\infty}\left(1-\frac{\left(\frac{1}{2}\right)^{2}}{k^{2}}\right)\right\} ^{-1}\\
& =\frac{\pi}{2}\sin^{-1}\left(\frac{\pi}{2}\right)\qquad,\qquad\sin(\pi z)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)\\
& =\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリスの公式 |
URL | https://www.nomuramath.com/rszzqz7i/ |
SNSボタン |
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]
一般化調和数の通常型母関数と調和数の指数型母関数
\[
\sum_{k=1}^{\infty}H_{k,m}z^{k}=\frac{\Li_{m}(z)}{1-z}
\]
logの2乗の級数表示
\[
\log^{2}(1-x)=2\sum_{k=1}^{\infty}\frac{H_{k}}{k+1}x^{k+1}
\]
数列の極限