3囚人問題
3囚人問題
3人の囚人A,B,Cがいます。
この3人のうちランダムに1人が助かり、2人は死刑になります。
囚人Aは看守に自分が死刑なのか聞いても教えてくれないので、「囚人Bか囚人C、どちらかが死刑になるのだから、死刑になる1人を教えてほしい」と聞いたところ、「囚人Bが死刑になる」と教えてくれました。
看守は囚人Aが助かる場合はランダムに囚人Bか囚人Cかを答えてます。
これで囚人Aか囚人Cどちらかが助かるのだから確率は元々の1/3から1/2になったでしょうか?
3人の囚人A,B,Cがいます。
この3人のうちランダムに1人が助かり、2人は死刑になります。
囚人Aは看守に自分が死刑なのか聞いても教えてくれないので、「囚人Bか囚人C、どちらかが死刑になるのだから、死刑になる1人を教えてほしい」と聞いたところ、「囚人Bが死刑になる」と教えてくれました。
看守は囚人Aが助かる場合はランダムに囚人Bか囚人Cかを答えてます。
これで囚人Aか囚人Cどちらかが助かるのだから確率は元々の1/3から1/2になったでしょうか?
囚人Aが助かる事象をA、看守が「囚人Bが死刑になる」と答える事象をbで表す。
他の囚人の場合も同様に表す。
元々囚人A,B,Cが助かる確率は、
\[ P\left(A\right)=P\left(B\right)=P\left(C\right)=\frac{1}{3} \] である。
「囚人Bが死刑になる」と知ったとき、囚人Aが助かる確率は、
\begin{align*} P\left(A;b\right) & =\frac{P\left(A\cap b\right)}{P\left(b\right)}\\ & =\frac{P\left(b;A\right)P\left(A\right)}{P\left(b\right)}\\ & =\frac{P\left(b;A\right)P\left(A\right)}{P\left(b;A\right)P\left(A\right)+P\left(b;B\right)P\left(B\right)+P\left(b;C\right)P\left(C\right)}\\ & =\frac{P\left(b;A\right)}{P\left(b;A\right)+P\left(b;B\right)+P\left(b;C\right)}\\ & =\frac{P\left(b;A\right)}{P\left(b;A\right)+1}\\ & =\frac{\frac{1}{2}}{\frac{1}{2}+1}\\ & =\frac{1}{3} \end{align*} となるので確率は変わっていない。
「囚人Bが死刑になる」と知ったとき、囚人Cが助かる確率は余事象より、
\begin{align*} P\left(C;b\right) & =1-P\left(A;b\right)\\ & =1-\frac{1}{3}\\ & =\frac{2}{3} \end{align*} 余事象を使わずに計算をしても、
\begin{align*} P\left(C;b\right) & =\frac{P\left(C\cap b\right)}{P\left(b\right)}\\ & =\frac{P\left(b;C\right)P\left(C\right)}{P\left(b\right)}\\ & =\frac{P\left(b;C\right)P\left(C\right)}{P\left(b;A\right)P\left(A\right)+P\left(b;B\right)P\left(B\right)+P\left(b;C\right)P\left(C\right)}\\ & =\frac{P\left(b;C\right)}{P\left(b;A\right)+P\left(b;B\right)+P\left(b;C\right)}\\ & =\frac{P\left(b;C\right)}{P\left(b;A\right)+1}\\ & =\frac{1}{\frac{1}{2}+1}\\ & =\frac{2}{3} \end{align*} となり、囚人Cが助かる確率は\(\frac{1}{3}\)から\(\frac{2}{3}\)に上がっている。
他の囚人の場合も同様に表す。
元々囚人A,B,Cが助かる確率は、
\[ P\left(A\right)=P\left(B\right)=P\left(C\right)=\frac{1}{3} \] である。
「囚人Bが死刑になる」と知ったとき、囚人Aが助かる確率は、
\begin{align*} P\left(A;b\right) & =\frac{P\left(A\cap b\right)}{P\left(b\right)}\\ & =\frac{P\left(b;A\right)P\left(A\right)}{P\left(b\right)}\\ & =\frac{P\left(b;A\right)P\left(A\right)}{P\left(b;A\right)P\left(A\right)+P\left(b;B\right)P\left(B\right)+P\left(b;C\right)P\left(C\right)}\\ & =\frac{P\left(b;A\right)}{P\left(b;A\right)+P\left(b;B\right)+P\left(b;C\right)}\\ & =\frac{P\left(b;A\right)}{P\left(b;A\right)+1}\\ & =\frac{\frac{1}{2}}{\frac{1}{2}+1}\\ & =\frac{1}{3} \end{align*} となるので確率は変わっていない。
「囚人Bが死刑になる」と知ったとき、囚人Cが助かる確率は余事象より、
\begin{align*} P\left(C;b\right) & =1-P\left(A;b\right)\\ & =1-\frac{1}{3}\\ & =\frac{2}{3} \end{align*} 余事象を使わずに計算をしても、
\begin{align*} P\left(C;b\right) & =\frac{P\left(C\cap b\right)}{P\left(b\right)}\\ & =\frac{P\left(b;C\right)P\left(C\right)}{P\left(b\right)}\\ & =\frac{P\left(b;C\right)P\left(C\right)}{P\left(b;A\right)P\left(A\right)+P\left(b;B\right)P\left(B\right)+P\left(b;C\right)P\left(C\right)}\\ & =\frac{P\left(b;C\right)}{P\left(b;A\right)+P\left(b;B\right)+P\left(b;C\right)}\\ & =\frac{P\left(b;C\right)}{P\left(b;A\right)+1}\\ & =\frac{1}{\frac{1}{2}+1}\\ & =\frac{2}{3} \end{align*} となり、囚人Cが助かる確率は\(\frac{1}{3}\)から\(\frac{2}{3}\)に上がっている。
ページ情報
タイトル | 3囚人問題 |
URL | https://www.nomuramath.com/rz1b1ry5/ |
SNSボタン |
点灯パズル
全てのマスのライトを付けるにはどうすればいいでしょうか?
2番目に大きい数字
2番目に大きい数字を選んだ人が勝つゲームはどうなる?
元の位置に戻ってきた
南に100m、東に100m、北に100mで元の位置に戻ってきたのは何故?
銅像をいつ倒す?
銅像を90度左右に回転させるだけで全員が部屋に入ったことをどうすれば確認ができるか?