ライプニッツ級数
\[
\sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4}
\]
が成り立つ。
\(|x|<1\)を考えると、
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
\begin{align*} \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1} & =\int_{0}^{x}\sum_{n=0}^{\infty}(-1)^{n}x^{2n}dx\\ & =\int_{0}^{x}\frac{1}{1+x^{2}}dx\\ & =[\arctan x]_{0}^{x}\\ & =\arctan x \end{align*} \(x=1\)のとき、交項級数のライプニッツ定理とアーベルの連続性定理より、
\[ \sum_{n=0}^{\infty}\frac{(-1)^{n}}{2n+1}=\frac{\pi}{4} \] が成り立つ。
ページ情報
タイトル | ライプニッツ級数 |
URL | https://www.nomuramath.com/s04t0d5m/ |
SNSボタン |
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]
階乗と冪乗の極限
\[
\lim_{n\rightarrow\infty}\frac{x^{n}}{n!}=0
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]
ウォリス積分を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}}
\]