離散位相は距離化可能

離散位相は距離化可能
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
任意の\(x\in X\)に対し\(U_{1/2}\left(x\right)=\left\{ x\right\} \)となるので\(\left\{ x\right\} \)は開集合となる。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。

ページ情報
タイトル
離散位相は距離化可能
URL
https://www.nomuramath.com/s4i1c176/
SNSボタン