離散位相は距離化可能
離散位相は距離化可能
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
離散位相\(\left(X,2^{X}\right)\)は離散距離空間\(\left(X,d\right)\)で距離化可能である。
任意の\(x\in X\)に対し\(U_{1/2}\left(x\right)=\left\{ x\right\} \)となるので\(\left\{ x\right\} \)は開集合となる。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
任意の部分集合\(A\subseteq X\)をとると、\(A=\bigcup_{x\in A}\left\{ x\right\} \)となるので\(A\)は開集合となる。
これより、離散距離空間\(\left(X,d\right)\)の開集合\(\mathcal{O}_{d}\)は\(\mathcal{O}_{d}=2^{x}\)となるので題意は成り立つ。
ページ情報
タイトル | 離散位相は距離化可能 |
URL | https://www.nomuramath.com/s4i1c176/ |
SNSボタン |
距離空間の有界・直径と全有界の定義
\[
\diam\left(A\right):=\sup\left\{ d\left(a,b\right);a,b\in A\right\}
\]
距離空間の定義
\[
d\left(x,y\right)\leq d\left(x,z\right)+d\left(z,y\right)
\]
2つの距離関数と点列・開集合・閉集合の関係
有限集合で距離化可能なのは離散位相のみ
有限位相空間では距離化可能と離散位相は同値である。