逆関数の微分
逆関数の微分
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
(0)
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{df^{\bullet}(x)}{df\left(f^{\bullet}(x)\right)}\\ & =\left(\frac{df\left(f^{\bullet}(x)\right)}{df^{\bullet}(x)}\right)^{-1} \end{align*}(0)-2
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{dy}{df(y)}\cnd{y=f^{\bullet}(x)}\\ & =\left[\left(\frac{df(y)}{dy}\right)^{-1}\right]_{y=f^{\bullet}(x)}\\ & =\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \end{align*}ページ情報
タイトル | 逆関数の微分 |
URL | https://www.nomuramath.com/sab0pzet/ |
SNSボタン |
反復積分に関するコーシーの公式
\[
\int_{a}^{x}\int_{a}^{y_{1}}\cdots\int_{a}^{y_{n-1}}f\left(y_{n}\right)dy_{n}\cdots dy_{1}=\frac{1}{\left(n-1\right)!}\int_{a}^{x}\left(x-t\right)^{n-1}f\left(t\right)dt
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]