逆関数の微分
逆関数の微分
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
\[ \frac{df^{\bullet}(x)}{dx}=\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \]
(0)
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{df^{\bullet}(x)}{df\left(f^{\bullet}(x)\right)}\\ & =\left(\frac{df\left(f^{\bullet}(x)\right)}{df^{\bullet}(x)}\right)^{-1} \end{align*}(0)-2
\begin{align*} \frac{df^{\bullet}(x)}{dx} & =\frac{dy}{df(y)}\cnd{y=f^{\bullet}(x)}\\ & =\left[\left(\frac{df(y)}{dy}\right)^{-1}\right]_{y=f^{\bullet}(x)}\\ & =\left(\frac{df(f^{\bullet}(x))}{df^{\bullet}(x)}\right)^{-1} \end{align*}ページ情報
タイトル | 逆関数の微分 |
URL | https://www.nomuramath.com/sab0pzet/ |
SNSボタン |
冪関数と指数関数の積の積分
\[
\int z^{\alpha}e^{\beta z}dz=\frac{z^{\alpha}}{\beta\left(-\beta z\right)^{\alpha}}\Gamma\left(\alpha+1,-\beta z\right)+C
\]
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]
微分の基本公式
\[
\left(f(x)g(x)\right)'=f'(x)g(x)+f(x)g'(x)
\]
微分・原始関数・定積分・不定積分の定義
\[
\frac{df(x)}{dx}=\lim_{\Delta x\rightarrow0}\frac{f(x+\Delta x)-f(x)}{\Delta x}
\]