距離関数は連続関数
距離関数は連続関数
距離空間\(\left(X,d\right)\)の距離関数\(d:X\times X\rightarrow\mathbb{R}\)は直積距離空間\(\left(X\times X,d'\right)\)上の連続関数である。
距離空間\(\left(X,d\right)\)の距離関数\(d:X\times X\rightarrow\mathbb{R}\)は直積距離空間\(\left(X\times X,d'\right)\)上の連続関数である。
\(d'\left(\left(x_{2},y_{2}\right),\left(x_{1},y_{1}\right)\right)^{2}=d\left(x_{2},x_{1}\right)^{2}+d\left(y_{2},y_{1}\right)^{2}\)であるので、\(0<\delta\)として\(d'\left(\left(x_{2},y_{2}\right),\left(x_{1},y_{1}\right)\right)<\delta\rightarrow d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\)となる。
このとき、
\begin{align*} d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right) & \leq d\left(x_{2},x_{1}\right)+d\left(x_{1},y_{1}\right)+d\left(y_{1},y_{2}\right)-d\left(x_{1},y_{1}\right)\\ & =d\left(x_{2},x_{1}\right)+d\left(y_{1},y_{2}\right)\\ & <2\delta \end{align*} となり、同様に、\(d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)<2\delta\)となる。
これより、\(\left|d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)\right|<2\delta\)となるので、\(\delta=\frac{\epsilon}{2}\)とすれば、
\[ \forall\left(x_{1},y_{1}\right)\in X\times X,\forall\epsilon>0,\exists\delta>0,\forall\left(x_{2},y_{2}\right)\in X\times X;\left\{ d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\rightarrow\left|d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right)\right|<\epsilon\right\} \] となるので\(d\)は連続となる。
このとき、
\begin{align*} d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right) & \leq d\left(x_{2},x_{1}\right)+d\left(x_{1},y_{1}\right)+d\left(y_{1},y_{2}\right)-d\left(x_{1},y_{1}\right)\\ & =d\left(x_{2},x_{1}\right)+d\left(y_{1},y_{2}\right)\\ & <2\delta \end{align*} となり、同様に、\(d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)<2\delta\)となる。
これより、\(\left|d\left(x_{1},y_{1}\right)-d\left(x_{2},y_{2}\right)\right|<2\delta\)となるので、\(\delta=\frac{\epsilon}{2}\)とすれば、
\[ \forall\left(x_{1},y_{1}\right)\in X\times X,\forall\epsilon>0,\exists\delta>0,\forall\left(x_{2},y_{2}\right)\in X\times X;\left\{ d\left(x_{2},x_{1}\right)<\delta\land d\left(y_{2},y_{1}\right)<\delta\rightarrow\left|d\left(x_{2},y_{2}\right)-d\left(x_{1},y_{1}\right)\right|<\epsilon\right\} \] となるので\(d\)は連続となる。
ページ情報
タイトル | 距離関数は連続関数 |
URL | https://www.nomuramath.com/sghz7ubc/ |
SNSボタン |
距離空間での空集合・全体集合・1点集合
距離空間$\left(X,d\right)$で空集合$\emptyset$と全体集合$X$はどちらも開集合かつ閉集合となる。
点と集合との距離の関係
\[
d\left(x,A\right)=0\Leftrightarrow x\in A^{a}
\]
実数全体の集合は完備距離空間
距離空間での内点(内部)・外点(外部)・境界(境界点)・触点(閉包)・集積点(導集合)・孤立点の定義
\[
\exists\epsilon>0,U_{\epsilon}\left(x\right)\subseteq A
\]