負の整数の階乗の商
負の整数の階乗の商
\(m,n\in\mathbb{Z}\)とする。
\begin{align*} \frac{\left(-m\right)!}{\left(-n\right)!} & =\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)}\\ & =\left(-1\right)^{n-m}\frac{\left(n-1\right)!}{\left(m-1\right)!} \end{align*}
\(m,n\in\mathbb{Z}\)とする。
\begin{align*} \frac{\left(-m\right)!}{\left(-n\right)!} & =\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)}\\ & =\left(-1\right)^{n-m}\frac{\left(n-1\right)!}{\left(m-1\right)!} \end{align*}
(0)
\begin{align*} \frac{\left(-m\right)!}{\left(-n\right)!} & =P\left(-m,-m+n\right)\\ & =\left(-1\right)^{n-m}Q\left(m,n-m\right)\\ & =\left(-1\right)^{n-m}P^{-1}\left(m-1,m-n\right)\\ & =\left(-1\right)^{n-m}\frac{\left(m-1-\left(m-n\right)\right)!}{\left(m-1\right)!}\\ & =\left(-1\right)^{n-m}\frac{\left(n-1\right)!}{\left(m-1\right)!}\\ & =\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)} \end{align*}(0)-2
\begin{align*} \frac{\left(-m\right)!}{\left(-n\right)!} & =\lim_{\epsilon\rightarrow0}\frac{\left(-\left(m+\epsilon\right)\right)!}{\left(-\left(n+\epsilon\right)\right)!}\\ & =\lim_{\epsilon\rightarrow0}\frac{\Gamma\left(1-\left(m+\epsilon\right)\right)}{\Gamma\left(1-\left(n+\epsilon\right)\right)}\\ & =\lim_{\epsilon\rightarrow0}\frac{\Gamma\left(\left(m+\epsilon\right)\right)\pi\sin\left(\pi\left(n+\epsilon\right)\right)}{\Gamma\left(\left(n+\epsilon\right)\right)\pi\sin\left(\pi\left(m+\epsilon\right)\right)}\\ & =\lim_{\epsilon\rightarrow0}\frac{\Gamma\left(\left(m+\epsilon\right)\right)\pi\cos\left(\pi\left(n+\epsilon\right)\right)}{\Gamma\left(\left(n+\epsilon\right)\right)\pi\cos\left(\pi\left(m+\epsilon\right)\right)}\\ & =\frac{\Gamma\left(m\right)\cos\left(\pi n\right)}{\Gamma\left(n\right)\cos\left(\pi m\right)}\\ & =\left(-1\right)^{n-m}\frac{\Gamma\left(n\right)}{\Gamma\left(m\right)}\\ & =\left(-1\right)^{n-m}\frac{\left(n-1\right)!}{\left(m-1\right)!} \end{align*}ページ情報
タイトル | 負の整数の階乗の商 |
URL | https://www.nomuramath.com/ssw1sww3/ |
SNSボタン |
ガンマ関数・ディガンマ関数・ポリガンマ関数の定義
\[
\Gamma(z)=\int_{0}^{\infty}t^{z-1}e^{-t}dt
\]
ガンマ関数と階乗の関係
\[
\Gamma(n+1)=n!
\]
そのままだとΓ(0)になる積分
\[
\int_{0}^{\infty}\left(x^{-1}e^{-x}-\frac{e^{-nx}}{1-e^{-x}}\right)dx=H_{n-1}-\gamma
\]
ガンマ関数のルジャンドル倍数公式
\[
\Gamma(2z)=\frac{2^{2z-1}}{\sqrt{\pi}}\Gamma(z)\Gamma\left(z+\frac{1}{2}\right)
\]