否定同値の否定同値は同値の同値
否定同値の否定同値は同値の同値
\(P,Q,R\)は命題変数とする。
\[ P\nleftrightarrow Q\nleftrightarrow R\Leftrightarrow P\leftrightarrow Q\leftrightarrow R \]
\(P,Q,R\)は命題変数とする。
\[ P\nleftrightarrow Q\nleftrightarrow R\Leftrightarrow P\leftrightarrow Q\leftrightarrow R \]
\begin{align*}
P\nleftrightarrow Q\nleftrightarrow R & \Leftrightarrow P\nleftrightarrow\lnot\left(Q\leftrightarrow R\right)\\
& \Leftrightarrow P\leftrightarrow\left(Q\leftrightarrow R\right)\\
& \Leftrightarrow P\leftrightarrow Q\leftrightarrow R
\end{align*}
ページ情報
タイトル | 否定同値の否定同値は同値の同値 |
URL | https://www.nomuramath.com/t0jakxlm/ |
SNSボタン |
全称命題と存在命題の否定と部分否定・全否定
\[
\lnot\forall x,P\left(x\right)\Leftrightarrow\exists x,\lnot P\left(x\right)
\]
論理演算同士の関係
\begin{align*}
P\lor Q & \Leftrightarrow\lnot P\uparrow\lnot Q\\
& \Leftrightarrow\lnot P\rightarrow Q\\
& \Leftrightarrow P\leftarrow\lnot Q\\
& \Leftrightarrow\lnot\left(\lnot P\land\lnot Q\right)\\
& \Leftrightarrow\lnot\left(P\downarrow Q\right)\\
& \Leftrightarrow\lnot\left(\lnot P\nrightarrow Q\right)\\
& \Leftrightarrow\lnot\left(P\nleftarrow Q\right)
\end{align*}
優先順位を変更したものとの包含関係・同値関係
\[
P\lor\left(Q\land R\right)\Leftarrow\left(P\lor Q\right)\land R
\]
結合法則一覧
\[
P\leftrightarrow\left(Q\leftrightarrow R\right)\Leftrightarrow\left(P\leftrightarrow Q\right)\leftrightarrow R
\]