チェビシェフ多項式の母関数

チェビシェフ多項式の母関数

通常型母関数

(1)

k=0Tk(x)tk=1tx12tx+t2

(2)

k=0Uk(x)tk=112tx+t2
指数型母関数

(3)

k=0Tk(x)tkk!=etxcos(t1x2)

(4)

k=0Uk(x)tkk!=etx{cos(t1x2)+x1x2sin(t1x2)}

(1)

k=0Tk(cosy)tk=k=0cos(ky)tk=(k=0(eiyt)k)=(11eiyt)=12(11eiyt+11eiyt)=12(1eiyt+1eiyt(1eiyt)(1eiyt))=12(2(eiy+eiy)t1(eiy+eiy)t+t2)=1tcosy12tcosy+t2 これより、
k=0Tk(x)tk=1tx12tx+t2

(1)-2

k=0Tk(x)tk=T0(x)+T1(x)t+k=2Tk(x)tk=1+xt+k=0Tk+2(x)tk+2=1+xt+k=0(2xTk+1(x)Tk(x))tk+2=1+xt+2xtk=0Tk+1(x)tk+1t2k=0Tk(x)tk=1+xt+2xt{k=0Tk(x)tkT0(x)t0}t2k=0Tk(x)tk=1+xt2xt+(2xtt2)LHS=1tx12tx+t2

(2)

k=0Uk(cosy)tk=1sinyk=0sin((k+1)y)tk=1sinyk=0(sin(ky)cosy+cos(ky)siny)tk=cosysinyk=0(sin(ky)tk)+k=0(cos(ky)tk)=cosysiny(k=0(eiyt)k)+k=0(Tk(cosy)tk)=cosysiny(11eiyt)+k=0(Tk(cosy)tk)=cosy2isiny(11eiyt11eiyt)+k=0(Tk(cosy)tk)=cosy2isiny(1eiyt)(1eiyt)(1eiyt)(1eiyt)+k=0(Tk(cosy)tk)=cosy2isiny(eiyeiy)t1(eiy+eiy)t+t2+k=0(Tk(cosy)tk)=tcosy12tcosy+t2+1tcosy12tcosy+t2=112tcosy+t2 これより、
k=0Uk(x)tk=112tx+t2

(2)-2

k=0Uk(x)tk=U0(x)+U1(x)t+k=2Uk(x)tk=1+2xt+k=0Uk+2(x)tk+2=1+2xt+k=0(2xUk+1(x)Uk(x))tk+2=1+2xt+2xtk=0Uk+1(x)tk+1t2k=0Uk(x)tk=1+2xt+2xt{k=0Uk(x)tkU0(x)t0}t2k=0Uk(x)tk=1+2xt2xt+(2xtt2)LHS=112tx+t2

(3)

k=0Tk(x)tkk!=k=0cos(kcosx)tkk!=12k=0(eikcosx+eikcosx)tkk!=12k=0((eicosx)k+(eicosx)k)tkk!=12k=0((x+isincosx)k+(xisincosx)k)tkk!=12{k=0(x+i1x2)ktkk!+k=0(xi1x2)ktkk!}=12{et(x+i1x2)+et(xi1x2)}=etx2(e+it1x2+eit1x2)=etxcos(t1x2)

(4)

k=0Uk(x)tkk!=k=0sin((k+1)cosx)sincosxtkk!=12i1x2k=0(ei(k+1)cosxei(k+1)cosx)tkk!=12i1x2k=0((eicosx)k+1(eicosx)k+1)tkk!=12i1x2k=0((x+isincosx)k+1(xisincosx)k+1)tkk!=12i1x2{k=0(x+i1x2)k+1tkk!k=0(xi1x2)k+1tkk!}=12i1x2{(x+i1x2)et(x+i1x2)(xi1x2)et(xi1x2)}=etx2i1x2((x+i1x2)e+it1x2(xi1x2)eit1x2)=etx{cos(t1x2)+x1x2sin(t1x2)}
数学言語
在宅ワーカー募集中
スポンサー募集!

ページ情報
タイトル
チェビシェフ多項式の母関数
URL
https://www.nomuramath.com/t4xga0bc/
SNSボタン