剰余演算の定数倍
剰余演算の定数倍
\(\beta\ne0\)とする。
\(\left\lfloor z\right\rfloor \)は床関数
\(\sgn\left(z\right)\)は符号関数
\(\beta\ne0\)とする。
(1)
\[ \frac{1}{\gamma}\mod\left(\alpha,\beta\right)=\mod\left(\frac{\alpha}{\gamma},\frac{\beta}{\gamma}\right) \](2)
\[ \frac{1}{\delta}\mod\left(\alpha,\beta,\gamma\right)=\mod\left(\frac{\alpha}{\delta},\frac{\beta}{\delta},\frac{\gamma}{\delta}\right) \](3)
\[ \mod\left(\alpha,\beta,\gamma\right)=\sgn\left(\beta\right)\mod\left(\alpha\sgn\left(\beta\right),\left|\beta\right|,\gamma\sgn\left(\beta\right)\right) \]-
\(\mod\left(\alpha,\beta\right)\)は剰余演算\(\left\lfloor z\right\rfloor \)は床関数
\(\sgn\left(z\right)\)は符号関数
(1)
\begin{align*} \frac{1}{\gamma}\mod\left(\alpha,\beta\right) & =\frac{\beta}{\gamma}\left(\frac{\alpha}{\beta}-\left\lfloor \frac{\alpha}{\beta}\right\rfloor \right)\\ & =\frac{\beta}{\gamma}\left(\frac{\alpha/\gamma}{\beta/\gamma}-\left\lfloor \frac{\alpha/\gamma}{\beta/\gamma}\right\rfloor \right)\\ & =\mod\left(\frac{\alpha}{\gamma},\frac{\beta}{\gamma}\right) \end{align*}(2)
\begin{align*} \frac{1}{\delta}\mod\left(\alpha,\beta,\gamma\right) & =\frac{1}{d}\left(\mod\left(\alpha-\gamma,\beta\right)+\gamma\right)\\ & =\mod\left(\frac{\alpha-\gamma}{\delta},\frac{\beta}{\delta}\right)+\frac{\gamma}{\delta}\\ & =\mod\left(\frac{\alpha}{\delta},\frac{\beta}{\delta},\frac{\gamma}{\delta}\right) \end{align*}(3)
\begin{align*} \mod\left(\alpha,\beta,\gamma\right) & =\sgn\left(\beta\right)\mod\left(\frac{\alpha}{\sgn\left(\beta\right)},\left|\beta\right|,\frac{\gamma}{\sgn\left(\beta\right)}\right)\\ & =\sgn\left(\beta\right)\mod\left(\alpha\sgn\left(\beta\right),\left|\beta\right|,\gamma\sgn\left(\beta\right)\right) \end{align*}ページ情報
タイトル | 剰余演算の定数倍 |
URL | https://www.nomuramath.com/td3q44u7/ |
SNSボタン |
実数の複素数と複素共役の剰余演算
\[
\mod\left(1,\overline{\alpha}\right)=\overline{\mod\left(1,\alpha\right)}+i\overline{\alpha}\left|\sgn\mod\left(\Im\alpha,\left|\alpha\right|^{2}\right)\right|
\]
複素数と複素共役の実数での剰余演算
\[
\mod\left(\alpha,1\right)=\mod\left(\Re\alpha,1\right)+i\mod\left(\Im\alpha,1\right)
\]
剰余演算同士の和・差
\[
\mod\left(x,a,b\right)+\mod\left(y,a,b\right)=\mod\left(x+y,a,b\right)+a\mzp_{0,1}\left(b\sgn\left(a\right),b\sgn\left(a\right)+\left|a\right|;\sgn\left(a\right)\left(\mod\left(x,a,b\right)+\mod\left(y,a,b\right)\right)\right)
\]
負数の剰余演算
\[
\mod\left(-x,a,b\right)=-\mod\left(x+2b,a,b\right)+a\left|\sgn\left\{ \mod\left(x+2b,a,b\right)-b\right\} \right|+2b
\]