ヘヴィサイドの階段関数と符号関数・絶対値
ヘヴィサイドの階段関数と符号関数・絶対値
\begin{align*} H\left(x\right) & =\frac{x+\left|x\right|}{2x} \end{align*}
\(\sgn\left(x\right)\)は符号関数
(1)
\begin{align*} H\left(x\right) & =\max\left(x,0\right) \end{align*}(2)
\(x\ne0\)とする。\begin{align*} H\left(x\right) & =\frac{x+\left|x\right|}{2x} \end{align*}
(3)
\[ H_{\frac{1}{2}}\left(\pm x\right)=\frac{1\pm\sgn x}{2} \](4)
\[ 1\pm1=2H\left(\pm1\right) \](5)
\[ xH_{c}\left(x\right)-xH_{c}\left(-x\right)=\left|x\right| \]-
\(H\left(x\right)\)はヘヴィサイドの階段関数\(\sgn\left(x\right)\)は符号関数
(1)
\begin{align*} xH_{c}\left(x\right) & =\begin{cases} x & 0<x\\ 0 & x\leq0 \end{cases}\\ & =\max\left(x,0\right) \end{align*}(1)
\begin{align*} H\left(x\right) & =\frac{\sgn\left(x\right)+1}{2}\\ & =\frac{\sgn\left(x\right)x+x}{2x}\\ & =\frac{\left|x\right|+x}{2x} \end{align*}(2)
(1)より、\begin{align*} xH_{c}\left(x\right) & =\max\left(x,0\right)\\ & =\frac{x+0+\left|x-0\right|}{2}\cmt{\because\max\left(a,b\right)=\frac{a+b+\left|a-b\right|}{2}}\\ & =\frac{x+\left|x\right|}{2} \end{align*} となるので与式は成り立つ。
(3)
\begin{align*} H_{\frac{1}{2}}\left(\pm x\right) & =\frac{\sgn\left(\pm x\right)+1}{2}\\ & =\frac{1\pm\sgn\left(x\right)}{2} \end{align*}(3)-2
\(x\ne0\)とする。\begin{align*} H\left(\pm x\right) & =\frac{\left|\pm x\right|\pm x}{\pm2x}\\ & =\frac{\left|x\right|\pm x}{\pm2x}\\ & =\frac{\pm\left|x\right|+x}{2x}\\ & =\frac{1\pm\frac{\left|x\right|}{x}}{2}\\ & =\frac{1\pm\sgn x}{2} \end{align*} \(x=0\)のとき右辺は\(\frac{1}{2}\)になるので、
\[ H_{\frac{1}{2}}\left(\pm x\right)=\frac{1\pm\sgn x}{2} \]
(4)
\begin{align*} 1\pm1 & =1+\sgn\left(\pm1\right)\\ & =1+2H\left(\pm1\right)-1\\ & =2H\left(\pm1\right) \end{align*}(4)-2
\begin{align*} 1\pm1 & =1+\left\{ H\left(\pm1\right)-H\left(\mp1\right)\right\} \\ & =H\left(\pm1\right)+1-H\left(\mp1\right)\\ & =H\left(\pm1\right)+H\left(\pm1\right)\\ & =2H\left(\pm1\right) \end{align*}(5)
\begin{align*} xH_{c}\left(x\right)-xH_{c}\left(-x\right) & =\begin{cases} x & 0\leq x\\ -x & x<0 \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | ヘヴィサイドの階段関数と符号関数・絶対値 |
URL | https://www.nomuramath.com/tepesohf/ |
SNSボタン |
ヘヴィサイドの階段関数の2定義値を引数に持つ関数の和と差
\[
f\left(H\left(\pm_{1}1\right)\right)\pm_{2}f\left(-H\left(\mp_{1}1\right)\right)=\left(f\left(0\right)+f\left(\pm_{1}1\right)\right)H\left(\pm_{2}1\right)\mp_{1}\left(f\left(0\right)-f\left(\pm_{1}1\right)\right)H\left(\mp_{2}1\right)
\]
ヘヴィサイドの階段関数と符号関数の関係
\[
H_{a}\left(x\right)=\frac{\sgn\left(x\right)+1}{2}+\left(a-\frac{1}{2}\right)\delta_{0,x}
\]
ヘヴィサイドの階段関数の問題
\[
f\left(H\left(\pm_{1}1\right)\right)g\left(-H\left(\pm_{1}1\right)\right)\pm_{2}f\left(-H\left(\mp_{1}1\right)\right)g\left(H\left(\mp_{1}1\right)\right)=\left\{ f\left(0\right)g\left(0\right)+f\left(\pm1\right)g\left(\mp1\right)\right\} H\left(\pm_{2}1\right)\mp_{1}\left\{ f\left(0\right)g\left(0\right)-f\left(\pm_{1}1\right)g\left(\mp_{1}1\right)\right\} H\left(\mp_{2}1\right)
\]
ヘヴィサイドの階段関数とクロネッカーのデルタの関係
\[
H_{a}\left(n\right)-H_{b}\left(n-1\right)=a\delta_{0,n}+\left(1-b\right)\delta_{1,n}
\]