ウォリス積分の値
ウォリス積分の値
\(m\in\mathbb{N}_{0}\)とする。
\(m\in\mathbb{N}_{0}\)とする。
(1)
\[ \int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta=\frac{C(2m,m)}{4^{m}}\frac{\pi}{2} \](2)
\[ \int_{0}^{\frac{\pi}{2}}\sin^{2m+1}\theta d\theta=\frac{4^{m}}{(2m+1)C(2m,m)} \](0)
\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\frac{1}{2}B\left(\frac{n+1}{2},\frac{1}{2}\right)\\ & =\frac{1}{2}\frac{\Gamma\left(\frac{n+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)} \end{align*}(1)
\(n=2m(m\in\mathbb{N}_{0})\)のとき、\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta & =\frac{1}{2}\frac{\Gamma\left(m+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(m+1\right)}\\ & =\frac{1}{2}\frac{(2m-1)!\sqrt{\pi}\sqrt{\pi}}{2^{2m-1}(m-1)!m!}\\ & =\frac{C(2m,m)}{4^{m}}\frac{\pi}{2} \end{align*}
(2)
\(n=2m+1(m\in\mathbb{N}_{0})\)のとき、\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{2m+1}\theta d\theta & =\frac{1}{2}\frac{\Gamma\left(m+1\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(m+\frac{3}{2}\right)}\\ & =\frac{1}{2}\frac{(m+1)!\sqrt{\pi}2^{2m+1}m!}{(2m+1)!\sqrt{\pi}}\\ & =\frac{2^{2m}(m!)^{2}}{(2m+1)!}\\ & =\frac{4^{m}}{(2m+1)C(2m,m)} \end{align*}
(0)-2
\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\sin^{n-1}\theta\sin\theta d\theta\\ & =-\left[\sin^{n-1}\theta\cos\theta\right]_{0}^{\frac{\pi}{2}}+(n-1)\int_{0}^{\frac{\pi}{2}}\sin^{n-2}\theta\cos^{2}\theta d\theta\\ & =(n-1)\int_{0}^{\frac{\pi}{2}}\left(\sin^{n-2}\theta-\sin^{n}\theta\right)d\theta\\ & =\frac{n-1}{n}\int_{0}^{\frac{\pi}{2}}\sin^{n-2}\theta d\theta \end{align*} これより、(1)-2
\(n=2m(m\in\mathbb{N}_{0})\)のとき、\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{2m}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\sin^{0}\theta d\theta\prod_{k=0}^{m-1}\frac{\int_{0}^{\frac{\pi}{2}}\sin^{2k+2}\theta d\theta}{\int_{0}^{\frac{\pi}{2}}\sin^{2k}\theta d\theta}\\ & =\frac{\pi}{2}\prod_{k=0}^{m-1}\frac{2k+1}{2k+2}\\ & =\frac{\pi}{2}\frac{(2m-1)!!}{(2m)!!}\\ & =\frac{\pi}{2}\frac{(2m-1)!}{2^{2m-1}m!(m-1)!}\\ & =\frac{C(2m,m)}{4^{m}}\frac{\pi}{2} \end{align*}
(2)-2
\(n=2m+1(m\in\mathbb{N}_{0})\)のとき、\begin{align*} \int_{0}^{\frac{\pi}{2}}\sin^{2m+1}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\sin\theta d\theta\prod_{k=0}^{m-1}\frac{\int_{0}^{\frac{\pi}{2}}\sin^{2k+3}\theta d\theta}{\int_{0}^{\frac{\pi}{2}}\sin^{2k+1}\theta d\theta}\\ & =\prod_{k=0}^{m-1}\frac{2k+2}{2k+3}\\ & =\frac{(2m)!!}{(2m+1)!!}\\ & =\frac{2^{2m}(m!)^{2}}{(2m+1)!}\\ & =\frac{4^{m}}{(2m+1)C(2m,m)} \end{align*}
ページ情報
タイトル | ウォリス積分の値 |
URL | https://www.nomuramath.com/tgvewqxc/ |
SNSボタン |
円周率
円周率πの定義と積分での表示。
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]
二項係数とベータ関数を含む極限
\[
\lim_{n\rightarrow\infty}\sqrt{n}4^{n}B(n,n)=2\sqrt{\pi}
\]
中央2項係数の総和
\[
\sum_{k=0}^{\infty}C^{-1}\left(2k,k\right)=\frac{4}{3}+\frac{2\sqrt{3}\pi}{27}
\]