三角関数の合成
三角関数の合成
(1)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*} \begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}(2)
\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta) \end{align*} \begin{align*} \beta & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*}(1)
\begin{align*} \alpha & =\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}+\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\sin\theta\cos\alpha+\cos\theta\sin\alpha\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha) \end{align*}
(2)
(1)より、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta+\alpha-\frac{\pi}{2})\\ & =\sqrt{a^{2}+b^{2}}\cos(\theta-\beta)\qquad,\qquad\beta=\frac{\pi}{2}-\alpha \end{align*} \begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arcsin\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}} \end{align*} 同様に、
\begin{align*} \beta & =\frac{\pi}{2}-\alpha\\ & =\frac{\pi}{2}-\arccos\frac{a}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} これより、
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*}
(2)別解
\begin{align*} \beta & =\arccos\frac{b}{\sqrt{a^{2}+b^{2}}}\\ & =\arcsin\frac{a}{\sqrt{a^{2}+b^{2}}} \end{align*} とおくと、\begin{align*} a\sin\theta+b\cos\theta & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\frac{b}{\sqrt{a^{2}+b^{2}}}+\sin\theta\frac{a}{\sqrt{a^{2}+b^{2}}}\right)\\ & =\sqrt{a^{2}+b^{2}}\left(\cos\theta\cos\beta+\sin\theta\sin\beta\right)\\ & =\sqrt{a^{2}+b^{2}}\sin(\theta-\beta) \end{align*}
ページ情報
タイトル | 三角関数の合成 |
URL | https://www.nomuramath.com/ti9axpox/ |
SNSボタン |
三角関数の部分分数展開
\[
\pi\tan\pi x =-\sum_{k=-\infty}^{\infty}\frac{1}{x+\frac{1}{2}+k}
\]
三角関数の積
\[
\prod_{k=1}^{n-1}\sin\frac{k\pi}{n}=\frac{n}{2^{n-1}}
\]
三角関数と双曲線関数の冪乗積分漸化式
\[
\int\sin^{n}xdx=-\frac{1}{n}\cos x\sin^{n-1}x+\frac{n-1}{n}\int\sin^{n-2}xdx\qquad(n\ne0)
\]
三角関数と双曲線関数の積和公式と和積公式
\[ \sin\alpha\cos\beta=\frac{1}{2}\left\{ \sin(\alpha+\beta)+\sin(\alpha-\beta)\right\}
\]