線型隣接二項間漸化式
(1)定数係数線型隣接二項間漸化式
\[ a_{n+1}=pa_{n}+q \] の一般項は、\[ a_{n}=\begin{cases} p^{n-1}a_{1}+q\frac{p^{n-1}-1}{p-1} & p\ne1\\ a_{1}+\left(n-1\right)q & p=1 \end{cases} \] 又は、\(a_{c}\)が既知のとき、
\[ a_{n}=\begin{cases} p^{n-c}a_{c}+q\frac{p^{n-c}-1}{p-1} & p\ne1\\ a_{c}+\left(n-c\right)q & p=1 \end{cases} \]
(2)
\[ a_{n+1}=pa_{n}+q\left(n\right) \] の一般項は\[ a_{n}=p^{n-1}a_{1}+\sum_{k=1}^{n-1}p^{n-1-k}q\left(k\right) \] 又は、\(a_{c}\)が既知のとき、
\[ a_{n}=p^{n-c}a_{c}+\sum_{k=c}^{n-1}p^{n-k-1}q\left(k\right) \]
(3)
\[ a_{n+1}=p\left(n\right)a_{n}+q \] の一般項は\[ a_{n}=a_{1}\prod_{i=1}^{n-1}p\left(i\right)+q\sum_{j=1}^{n-1}\left(\prod_{i=j+1}^{n-1}p\left(i\right)\right) \] 又は、\(a_{c}\)が既知のとき、
\[ a_{n}=a_{c}\prod_{i=c}^{n-1}p\left(i\right)+q\sum_{j=c}^{n-1}\left(\prod_{i=j+1}^{n-1}p\left(i\right)\right) \]
(4)線型隣接二項間漸化式
\[ a_{n+1}=p\left(n\right)a_{n}+q\left(n\right) \] の一般項は\[ a_{n}=a_{1}\prod_{i=1}^{n-1}p\left(i\right)+\sum_{j=1}^{n-1}q\left(j\right)\prod_{i=j+1}^{n-1}p\left(i\right) \] 又は、\(a_{c}\)が既知のとき、
\[ a_{n}=\left(a_{c}\prod_{i=c}^{n-1}p\left(i\right)+\sum_{j=c}^{n-1}q\left(j\right)\prod_{i=j+1}^{j}p\left(i\right)\right) \]
(1)
両辺を\(p^{n+1}\)で割ると、\[ \frac{a_{n+1}}{p^{n+1}}=\frac{a_{n}}{p^{n}}+\frac{q}{p^{n+1}} \] これを解くと、
\begin{align*} a_{n} & =p^{n}\left(\frac{a_{1}}{p}+\sum_{k=1}^{n-1}\left(\frac{a_{k+1}}{p^{k+1}}-\frac{a_{k}}{p^{k}}\right)\right)\\ & =p^{n-1}a_{1}+p^{n-2}q\sum_{k=1}^{n-1}\left(\frac{1}{p^{k-1}}\right)\\ & =p^{n-1}a_{1}+q\frac{p^{n-1}-1}{p-1} \end{align*} \(p=1\)のときは等比数列になるので、
\begin{align*} a_{n} & =a_{1}+\sum_{j=1}^{n-1}\left(a_{j+1}-a_{j}\right)\\ & =a_{1}+\left(n-1\right)q \end{align*}
\(a_{c}\)が既知のとき
\begin{align*} a_{n} & =p^{n}\left(\frac{a_{c}}{p^{c}}+\sum_{k=c}^{n-1}\left(\frac{a_{k+1}}{p^{k+1}}-\frac{a_{k}}{p^{k}}\right)\right)\\ & =p^{n}\left(\frac{a_{c}}{p^{c}}+\sum_{k=c}^{n-1}\left(\frac{q}{p^{k+1}}\right)\right)\\ & =p^{n-c}a_{c}+p^{n-1}q\sum_{k=c}^{n-1}\frac{1}{p^{k}}\\ & =p^{n-c}a_{c}+p^{n-1}\frac{q}{p^{c}}\frac{1-\left(\frac{1}{p}\right)^{n-c}}{1-\frac{1}{p}}\\ & =p^{n-c}a_{c}+q\frac{p^{n-c}-1}{p-1} \end{align*} \(p=1\)のときは等比数列になるので、\begin{align*} a_{n} & =a_{c}+\sum_{j=c}^{n-1}\left(a_{j+1}-a_{j}\right)\\ & =a_{c}+\left(n-c\right)q \end{align*}
(1)別解
特性方程式の解は\(\frac{q}{1-p}\)なので\(p\ne1\)のとき、\[ a_{n+1}-\frac{q}{1-p}=p\left(a_{n}-\frac{q}{1-p}\right) \] これを解くと、
\begin{align*} a_{n} & =\left(a_{1}-\frac{q}{1-p}\right)p^{n-1}+\frac{q}{1-p}\\ & =p^{n-1}a_{1}+q\frac{p^{n-1}-1}{p-1} \end{align*} \(p=1\)のときも同様にする。
(2)
両辺を\(p^{n+1}\)で割ると、\[ \frac{a_{n+1}}{p^{n+1}}=\frac{a_{n}}{p^{n}}+\frac{q\left(n\right)}{p^{n+1}} \] これを解くと、
\begin{align*} a_{n} & =p^{n}\left(\frac{a_{1}}{p}+\sum_{k=1}^{n-1}\left(\frac{a_{k+1}}{p^{k+1}}-\frac{a_{k}}{p^{k}}\right)\right)\\ & =p^{n-1}a_{1}+\sum_{k=1}^{n-1}p^{n-1-k}q\left(k\right) \end{align*}
\(a_{c}\)が既知のとき
\begin{align*} a_{n} & =p^{n}\frac{a_{c}}{p^{c}}+p^{n}\sum_{k=c}^{n-1}\left(\frac{a_{k+1}}{p^{k+1}}-\frac{a_{k}}{p^{k}}\right)\\ & =p^{n-c}a_{c}+p^{n}\sum_{k=c}^{n-1}\frac{q\left(k\right)}{p^{k+1}}\\ & =p^{n-c}a_{c}+\sum_{k=c}^{n-1}p^{n-k-1}q\left(k\right) \end{align*}(3)
両辺に\(\prod_{i=1}^{n}p^{-1}(i)\)をかけると、\[ a_{n+1}\prod_{i=1}^{n}p^{-1}\left(i\right)=a_{n}\prod_{i=1}^{n-1}p^{-1}\left(i\right)+q\prod_{i=1}^{n}p^{-1}\left(i\right) \] これを解くと、
\begin{align*} a_{n} & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{1}+\sum_{j=1}^{n-1}\left(a_{j+1}\prod_{i=1}^{j}p^{-1}\left(i\right)-a_{j}\prod_{i=1}^{j-1}p^{-1}\left(i\right)\right)\right)\\ & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{1}+q\sum_{j=1}^{n-1}\left(\prod_{i=1}^{j}p^{-1}\left(i\right)\right)\right)\\ & =a_{1}\prod_{i=1}^{n-1}p\left(i\right)+q\sum_{j=1}^{n-1}\left(\prod_{i=j+1}^{n-1}p\left(i\right)\right) \end{align*}
\(a_{c}\)が既知のとき
\begin{align*} a_{n} & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{c}\prod_{i=1}^{c-1}p^{-1}\left(i\right)+\sum_{j=c}^{n-1}\left(a_{j+1}\prod_{i=1}^{j}p^{-1}\left(i\right)-a_{j}\prod_{i=1}^{j-1}p^{-1}\left(i\right)\right)\right)\\ & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{c}\prod_{i=1}^{c-1}p^{-1}\left(i\right)+q\sum_{j=c}^{n-1}\left(\prod_{i=1}^{j}p^{-1}\left(i\right)\right)\right)\\ & =a_{c}\prod_{i=c}^{n-1}p\left(i\right)+q\sum_{j=c}^{n-1}\left(\prod_{i=j+1}^{n-1}p\left(i\right)\right) \end{align*}(4)
両辺に\(\prod_{i=1}^{n}p^{-1}\left(i\right)\)をかけると、\[ a_{n+1}\prod_{i=1}^{n}p^{-1}\left(i\right)=a_{n}\prod_{i=1}^{n-1}p^{-1}\left(i\right)+q\left(n\right)\prod_{i=1}^{n}p^{-1}\left(i\right) \] これを解くと、
\begin{align*} a_{n} & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{1}+\sum_{j=1}^{n-1}\left(a_{j+1}\prod_{i=1}^{j}p^{-1}\left(i\right)-a_{j}\prod_{i=1}^{j-1}p^{-1}\left(i\right)\right)\right)\\ & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{1}+\sum_{j=1}^{n-1}q\left(j\right)\prod_{i=1}^{j}p^{-1}\left(i\right)\right)\\ & =a_{1}\prod_{i=1}^{n-1}p\left(i\right)+\sum_{j=1}^{n-1}q\left(j\right)\prod_{i=j+1}^{n-1}p\left(i\right) \end{align*}
\(a_{c}\)が既知のとき
\begin{align*} a_{n} & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{c}\prod_{i=1}^{c-1}p^{-1}\left(i\right)+\sum_{j=c}^{n-1}\left(a_{j+1}\prod_{i=1}^{j}p^{-1}\left(i\right)-a_{j}\prod_{i=1}^{j-1}p^{-1}\left(i\right)\right)\right)\\ & =\left(\prod_{i=1}^{n-1}p\left(i\right)\right)\left(a_{c}\prod_{i=1}^{c-1}p^{-1}\left(i\right)+\sum_{j=c}^{n-1}q\left(j\right)\prod_{i=1}^{j}p^{-1}\left(i\right)\right)\\ & =\left(a_{c}\prod_{i=c}^{n-1}p\left(i\right)+\sum_{j=c}^{n-1}q\left(j\right)\prod_{i=j+1}^{j}p\left(i\right)\right) \end{align*}ページ情報
タイトル | 線型隣接二項間漸化式 |
URL | https://www.nomuramath.com/tpt3f9mp/ |
SNSボタン |
漸化式の基本
\[
a_{n+1}=a_{n}+d
\]