3角関数と3角関数の対数の積分

3角関数と3角関数の対数の積分
次の積分が成り立つ。

(1)

\[ \int\sin\left(z\right)\log\left(\sin z\right)dz=-\cos z\log\sin z+\cos z+\log\left(\sin\frac{z}{2}\right)-\log\left(\cos\frac{z}{2}\right)+C \]

(2)

\[ \int\cos\left(z\right)\log\left(\sin z\right)dz=\sin z\log\left(\sin z\right)-\sin z+C \]

(3)

\[ \int\cos\left(z\right)\log\left(\cos z\right)dz=\sin z\log\cos z-\sin z-\log\left(\cos\frac{z}{2}-\sin\frac{z}{2}\right)+\log\left(\cos\frac{z}{2}+\sin\frac{z}{2}\right)+C_{1} \]

(4)

\[ \int\sin\left(z\right)\log\left(\cos z\right)dz=-\cos z\log\left(\cos z\right)+\cos z+C \]

(1)

\begin{align*} \int\sin\left(z\right)\log\left(\sin z\right)dz & =-\cos z\log\sin z+\int\frac{\cos^{2}z}{\sin z}dz\\ & =-\cos z\log\sin z+\int\frac{1-\sin^{2}z}{\sin z}dz\\ & =-\cos z\log\sin z+\int\left(\frac{1}{\sin z}-\sin z\right)dz\\ & =-\cos z\log\sin z+\cos z+\int\frac{\sin z}{\sin^{2}z}dz\\ & =-\cos z\log\sin z+\cos z+\int\frac{\sin z}{1-\cos^{2}z}dz\\ & =-\cos z\log\sin z+\cos z+\frac{1}{2}\int\left(\frac{\sin z}{1-\cos z}+\frac{\sin z}{1+\cos z}\right)dz\\ & =-\cos z\log\sin z+\cos z+\frac{1}{2}\left(\log\left(1-\cos z\right)-\log\left(1+\cos z\right)\right)+C\\ & =-\cos z\log\sin z+\cos z+\frac{1}{2}\left(\log\left(2\sin^{2}\frac{z}{2}\right)-\log\left(2\cos^{2}\frac{z}{2}\right)\right)+C\\ & =-\cos z\log\sin z+\cos z+\frac{1}{2}\log\left(\sin^{2}\frac{z}{2}\right)-\frac{1}{2}\log\left(\cos^{2}\frac{z}{2}\right)+C\\ & =-\cos z\log\sin z+\cos z+\log\left(\sin\frac{z}{2}\right)-\log\left(\cos\frac{z}{2}\right)+C_{1} \end{align*}

(2)

\begin{align*} \int\cos\left(z\right)\log\left(\sin z\right)dz & =\sin z\log\left(\sin z\right)-\int\frac{\sin z\cos z}{\sin z}dz\\ & =\sin z\log\left(\sin z\right)-\int\cos zdz\\ & =\sin z\log\left(\sin z\right)-\sin z+C \end{align*}

(3)

\begin{align*} \int\cos\left(z\right)\log\left(\cos z\right)dz & =\sin z\log\cos z+\int\frac{\sin^{2}z}{\cos z}dz\\ & =\sin z\log\cos z+\int\frac{1-\cos^{2}z}{\cos z}dz\\ & =\sin z\log\cos z+\int\left(\frac{1}{\cos z}-\cos z\right)dz\\ & =\sin z\log\cos z-\sin z+\int\frac{\cos z}{\cos^{2}z}dz\\ & =\sin z\log\cos z-\sin z+\int\frac{\cos z}{1-\sin^{2}z}dz\\ & =\sin z\log\cos z-\sin z+\frac{1}{2}\int\left(\frac{\cos z}{1-\sin z}+\frac{\cos z}{1+\sin z}\right)dz\\ & =\sin z\log\cos z-\sin z+\frac{1}{2}\left(-\log\left(1-\sin z\right)+\log\left(1+\sin z\right)\right)+C\\ & =\sin z\log\cos z-\sin z-\frac{1}{2}\log\left(\left(\cos\frac{z}{2}-\sin\frac{z}{2}\right)^{2}\right)+\frac{1}{2}\log\left(\left(\cos\frac{z}{2}+\sin\frac{z}{2}\right)^{2}\right)+C\\ & =\sin z\log\cos z-\sin z-\log\left(\cos\frac{z}{2}-\sin\frac{z}{2}\right)+\log\left(\cos\frac{z}{2}+\sin\frac{z}{2}\right)+C_{1} \end{align*}

(4)

\begin{align*} \int\sin\left(z\right)\log\left(\cos z\right)dz & =-\cos z\log\left(\cos z\right)-\int\frac{\cos z\sin z}{\cos z}dz\\ & =-\cos z\log\left(\cos z\right)-\int\sin zdz\\ & =-\cos z\log\left(\cos z\right)+\cos z+C \end{align*}

ページ情報
タイトル
3角関数と3角関数の対数の積分
URL
https://www.nomuramath.com/ttuqei8e/
SNSボタン