ハイバー演算子の定義
ハイバー演算子の定義
\begin{align*} H_{n}\left(a,b\right): & =a^{\left(n\right)}b\\ & :=\begin{cases} b+1 & n=0\\ a+b & n=1\\ \underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a} & n=2,3,\cdots \end{cases}\\ & =\begin{cases} b+1 & n=0\\ a+b & n=1\\ a^{\left(n-1\right)}a^{\left(n\right)}\left(b-1\right) & n=2,3,\cdots \end{cases} \end{align*}
(1)定義
\(b,n\in\mathbb{N}_{0}\)とする。\begin{align*} H_{n}\left(a,b\right): & =a^{\left(n\right)}b\\ & :=\begin{cases} b+1 & n=0\\ a+b & n=1\\ \underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a} & n=2,3,\cdots \end{cases}\\ & =\begin{cases} b+1 & n=0\\ a+b & n=1\\ a^{\left(n-1\right)}a^{\left(n\right)}\left(b-1\right) & n=2,3,\cdots \end{cases} \end{align*}
(2)ハイバー演算子の優先順位
\[ a^{\left(m\right)}b^{\left(n\right)}c:=a^{\left(m\right)}\left(b^{\left(n\right)}c\right) \]\(n\geq2\)のとき、
\begin{align*} a^{\left(n\right)}b & =\underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a}\\ & =a^{\left(n-1\right)}\underbrace{a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b-1\;copies\;of\;a}\\ & =a^{\left(n-1\right)}a^{\left(n\right)}\left(b-1\right) \end{align*} となる。
\(H_{1}\left(a,b\right)=a+b\)
\(H_{2}\left(a,b\right)=ab\)
\(H_{3}\left(a,b\right)=a^{b}\)
\(H_{4}\left(a,b\right)=\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_{height\;b}\)
\(H_{4}\)はテトレーション (tetration)、\(H_{5}\)はペンテーション (pentation)、\(H_{6}\)はヘキセーション(hexation)という。
\begin{align*} a^{\left(n\right)}b & =\underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a}\\ & =a^{\left(n-1\right)}\underbrace{a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b-1\;copies\;of\;a}\\ & =a^{\left(n-1\right)}a^{\left(n\right)}\left(b-1\right) \end{align*} となる。
-
\(H_{0}\left(a,b\right)=b+1\)\(H_{1}\left(a,b\right)=a+b\)
\(H_{2}\left(a,b\right)=ab\)
\(H_{3}\left(a,b\right)=a^{b}\)
\(H_{4}\left(a,b\right)=\underbrace{a^{a^{\cdot^{\cdot^{a}}}}}_{height\;b}\)
\(H_{4}\)はテトレーション (tetration)、\(H_{5}\)はペンテーション (pentation)、\(H_{6}\)はヘキセーション(hexation)という。
ページ情報
タイトル | ハイバー演算子の定義 |
URL | https://www.nomuramath.com/u7v4qofy/ |
SNSボタン |
ハイパー演算子の優先順位
\[
I_{n+1}\left(a,b\right)=I_{n+1}\left(a,b-1\right)^{\left(n\right)}a
\]
2年生の夢(高さ2のテトレーションの0から1までの定積分)
\[
\int_{0}^{1}\frac{1}{x^{x}}dx=\sum_{k=1}^{\infty}\frac{1}{k^{k}}
\]
ハイパー演算子の結合法則
\[
a^{\left(n\right)}\left(b^{\left(n\right)}c\right)\ne\left(a^{\left(n\right)}b\right)^{\left(n\right)}c
\]
アッカーマン関数の定義と解
\[
A\left(m,n\right)=2\uparrow^{m-2}\left(n+3\right)-3
\]