共分散の基本的性質
\(X,Y\)を確率変数、\(a,b\)を定数とする。
(1)
\[ Cov(X,Y)=Cov(Y,X) \](2)
\[ Cov(X,Y+a)=Cov(X,Y) \](3)
\[ Cov(X,aY)=aCov(X,Y) \](1)
\begin{align*} Cov(X,Y) & =E\left(\left(X-E(X)\right)\left(Y-E(Y)\right)\right)\\ & =Cov(Y,X) \end{align*}(2)
\begin{align*} Cov(X,Y+a) & =E(X(Y+a))-E(X)E(Y+a)\\ & =E(XY)+aE(X)-E(X)E(Y)+aE(X)\\ & =E(XY)-E(X)E(Y)\\ & =Cov(X,Y) \end{align*}(3)
\begin{align*} Cov(X,aY) & =E(XaY)-E(X)E(aY)\\ & =a\left(E(XY)-E(X)E(Y)\right)\\ & =aCov(X,Y) \end{align*}ページ情報
タイトル | 共分散の基本的性質 |
URL | https://www.nomuramath.com/ugczz9jg/ |
SNSボタン |
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
誤差関数・相補誤差関数・虚数誤差関数の定義
\[
erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt
\]
期待値の基本的性質
\[
E(XY)=E(X)E(Y)+Cov(X,Y)
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]