分母に総和がある数の総和
分母に総和がある数の総和
次の総和を求めよ。
\[ \frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots=? \]
次の総和を求めよ。
\[ \frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots=? \]
\begin{align*}
\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\cdots & =\sum_{k=1}^{\infty}\frac{1}{\sum_{j=1}^{k}j}\\
& =\sum_{k=1}^{\infty}\frac{2}{k\left(k+1\right)}\\
& =2\sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)\\
& =2\left(\frac{1}{1}-\lim_{k\rightarrow\infty}\frac{1}{k+1}\right)\\
& =2
\end{align*}
ページ情報
タイトル | 分母に総和がある数の総和 |
URL | https://www.nomuramath.com/uqpvp5a2/ |
SNSボタン |
偶数ゼータ関数と円周率を含む交代級数
\[
\frac{\zeta\left(2\right)}{\pi^{2}}-\frac{\zeta\left(4\right)}{\pi^{4}}+\frac{\zeta\left(6\right)}{\pi^{6}}-\frac{\zeta\left(8\right)}{\pi^{8}}+\cdots=?
\]
分母に3次式の総和
\[
\sum_{k=1}^{\infty}\frac{1}{\left(4k\right)^{3}-4k}=?
\]
分母にルート同士の和がある総和
\[
\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{28}+\sqrt{29}}+\frac{1}{\sqrt{29}+\sqrt{30}}=?
\]
分母に階乗の和を含む総和
\[
\frac{3}{1!+2!+3!}+\frac{4}{2!+3!+4!}+\frac{5}{3!+4!+5!}+\cdots+\frac{100}{98!+99!+100!}=?
\]