5心(重心・内心・外心・垂心・傍心)の定義
5心(重心・内心・外心・垂心・傍心)の定義
3角形の5心(重心・内心・外心・垂心・傍心)を次で定義する。

3角形の5心(重心・内心・外心・垂心・傍心)を次で定義する。
(1)重心
3本の中線の交点を重心といい\(G\)で表す(2)垂心
各頂点からその対辺に下ろした垂線の交点を垂心といい\(H\)で表す(3)内心
各頂点の2等分線の交点を内心といい\(I\)で表す。(4)外心
各辺の垂直2等分線の交点を外心といい\(J\)または\(O\)で表す。(5)傍心(ぼうしん)
ある頂点の内角の2等分線と他の2頂点の外角の2等分線の交点を傍心といい\(I_{a},I_{b},I_{c}\)で表す。-
この5つ(重心・内心・外心・垂心・傍心)を5心という。ページ情報
タイトル | 5心(重心・内心・外心・垂心・傍心)の定義 |
URL | https://www.nomuramath.com/v0ql4qfo/ |
SNSボタン |
4角形の対辺同士の内積
\[
\overrightarrow{AB}\cdot\overrightarrow{CD}=\frac{1}{2}\left(b^{2}+d^{2}-p^{2}-q^{2}\right)
\]
円に外接する4角形の面積
\[
S=\sqrt{abcd}\sin\frac{A+C}{2}
\]
鋭角・直角・鈍角と鋭角3角形・直角3角形・鈍角3角形の定義と性質
$0^{\circ}$より大きく$90^{\circ}$より小さい角を鋭角という。
第1余弦定理と第2余弦定理
\[
a^{2}=b^{2}+c^{2}-2bc\cos A
\]