答えを求めるだけなら簡単
答えを求めるだけなら簡単
実数解\(x\)を求めよ。
\[ \sqrt{x^{2}-9}=x-2 \]
実数解\(x\)を求めよ。
\[ \sqrt{x^{2}-9}=x-2 \]
\(x^{2}-9<0\)とすると、与式左辺は純虚数、右辺は実数となるので不適なので\(x^{2}-9\geq0\)となり、このとき左辺は\(x-2\geq0\)となる。
これより、\(\left(x\leq-3\lor3\leq x\right)\land2\leq x\)となり、\(3\leq x\)となる。
両辺を2乗して、
\begin{align*} x^{2}-9 & =\left(x-2\right)^{2}\\ & =x^{2}-4x+4 \end{align*} 移項すると、
\[ 4x=13 \] \(x\)について解くと、
\[ x=\frac{13}{4} \] となり、
\[ 3\leq\frac{13}{4}=3+\frac{1}{4} \] となるので\(x=\frac{13}{4}\)が解になる。
これより、\(\left(x\leq-3\lor3\leq x\right)\land2\leq x\)となり、\(3\leq x\)となる。
両辺を2乗して、
\begin{align*} x^{2}-9 & =\left(x-2\right)^{2}\\ & =x^{2}-4x+4 \end{align*} 移項すると、
\[ 4x=13 \] \(x\)について解くと、
\[ x=\frac{13}{4} \] となり、
\[ 3\leq\frac{13}{4}=3+\frac{1}{4} \] となるので\(x=\frac{13}{4}\)が解になる。
ページ情報
タイトル | 答えを求めるだけなら簡単 |
URL | https://www.nomuramath.com/v3a17gjc/ |
SNSボタン |
絶対値を含む不等式の範囲
\[
a\left(\left|x\right|-a\right)+x+1<0,-1<a,x=?
\]
文字を消去すると4次方程式
\[
\begin{cases}
x^{2}-2y=4\\
y^{2}-2x=4
\end{cases}
\]
底が異なる指数方程式
\[
9^{x}-6^{x}=4^{x}
\]
3次方程式を解けるかな
\[
z^{3}+z^{2}=36
\]