包含関係は半順序関係
包含関係は半順序関係
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
包含関係は半順序関係(反射律・反対称律・推移律)を満たす。
\(A,B,C\)を集合とする。
反射律
\(\forall x\left(x\in A\rightarrow x\in A\right)\Rightarrow A\subseteq A\)なので\(A\subseteq A\)となり反射律を満たす。反対称律
\(A=B\Leftrightarrow A\subseteq B\land B\subseteq A\)なので\(A\subseteq B\land B\subseteq A\Rightarrow A=B\)となり、反対称律を満たす。推移律
\begin{align*} A\subseteq B\land B\subseteq C & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\forall x\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left(x\in A\rightarrow x\in B\right)\land\left(x\in B\rightarrow x\in C\right)\\ & \Leftrightarrow\forall x\left\{ \left(\lnot x\in A\lor x\in B\right)\land\left(\lnot x\in B\lor x\in C\right)\right\} \\ & \Rightarrow\forall x\left\{ \lnot x\in A\lor x\in B\lor\lnot x\in B\lor x\in C\right\} \\ & \Leftrightarrow\forall x\left\{ \lnot x\in A\lor x\in C\right\} \\ & \Rightarrow\forall x\left(x\in A\rightarrow x\in C\right)\\ & \Leftrightarrow A\subseteq C \end{align*} となるので\(A\subseteq B\land B\subseteq C\Rightarrow A\subseteq C\)より、推移律を満たす。-
これらより、反射律・反対称律・推移律を満たすので半順序関係を満たす。ページ情報
タイトル | 包含関係は半順序関係 |
URL | https://www.nomuramath.com/v6yqewcp/ |
SNSボタン |
チェビシェフ多項式の母関数
\[
\sum_{k=0}^{\infty}T_{k}(x)t^{k}=\frac{1-tx}{1-2tx+t^{2}}
\]
ガンマ関数の半整数値
\[
\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n-1)!}{2^{2n-1}(n-1)!}\sqrt{\pi}
\]
1±itan(z)など
\[
1\pm i\tan z=\frac{1}{\cos\left(2\Re z\right)+\cosh\left(2\Im z\right)}\left(e^{\pm2i\Re z}+e^{\mp2\Im z}\right)
\]
余弦積分の極限
\[
\lim_{x\rightarrow\pm0}\left\{ \Ci\left(\alpha x\right)-\Ci\left(x\right)\right\} =\begin{cases}
\Log\alpha & x\rightarrow+0\\
\Log\left(-\alpha\right)-\pi i & x\rightarrow-0
\end{cases}
\]