テトレーションの微分
テトレーションの微分
\(n\in\mathbb{N}_{0}\)とする。
\[ \frac{d}{dz}\left(z\uparrow^{2}n\right)=\frac{1}{z}\sum_{k=1}^{n}\left(\log^{k-1}z\right)\prod_{j=n-k}^{n}\left(z\uparrow^{2}j\right) \]
\(n\in\mathbb{N}_{0}\)とする。
\[ \frac{d}{dz}\left(z\uparrow^{2}n\right)=\frac{1}{z}\sum_{k=1}^{n}\left(\log^{k-1}z\right)\prod_{j=n-k}^{n}\left(z\uparrow^{2}j\right) \]
-
\(z\uparrow^{2}n\)はクヌースの矢印表記\begin{align*}
\frac{d}{dz}\left(z\uparrow^{2}n\right) & =\frac{d}{dz}\left(z\uparrow z\uparrow^{2}\left(n-1\right)\right)\\
& =\frac{d}{dz}\left(z^{z\uparrow^{2}\left(n-1\right)}\right)\\
& =z\uparrow^{2}\left(n-1\right)z^{z\uparrow^{2}\left(n-1\right)-1}+\log z\cdot z^{z\uparrow^{2}\left(n-1\right)}\frac{d}{dz}z\uparrow^{2}\left(n-1\right)\\
& =z\uparrow^{2}\left(n-1\right)\cdot z\uparrow^{2}n\cdot z^{-1}+\log z\cdot z\uparrow^{2}n\frac{d}{dz}z\uparrow^{2}\left(n-1\right)\\
& =\log^{n}z\left(\prod_{j=1}^{n}z\uparrow^{2}j\right)\sum_{k=1}^{n}\left\{ \left(\prod_{j=1}^{k}\frac{1}{\log z\cdot z\uparrow^{2}j}\right)\frac{d}{dz}\left(z\uparrow^{2}k\right)-\left(\prod_{j=1}^{k-1}\frac{1}{\log z\cdot z\uparrow^{2}j}\right)\frac{d}{dz}z\uparrow^{2}\left(k-1\right)\right\} \\
& =\log^{n}z\left(\prod_{j=1}^{n}z\uparrow^{2}j\right)\sum_{k=1}^{n}\left\{ \left(\prod_{j=1}^{k}\frac{1}{\log z\cdot z\uparrow^{2}j}\right)z\uparrow^{2}\left(k-1\right)\cdot z\uparrow^{2}k\cdot z^{-1}\right\} \\
& =\log^{n}z\left(\prod_{j=1}^{n}z\uparrow^{2}j\right)\sum_{k=1}^{n}\left\{ \frac{1}{\log^{k}z}\left(\prod_{j=1}^{k-2}\frac{1}{z\uparrow^{2}j}\right)\cdot z^{-1}\right\} \\
& =\frac{1}{z}\sum_{k=1}^{n}\left(\log^{n-k}z\right)\left(\prod_{j=k-1}^{n}z\uparrow^{2}j\right)\\
& =\frac{1}{z}\sum_{k=0}^{n-1}\left(\log^{k}z\right)\left(\prod_{j=n-k-1}^{n}z\uparrow^{2}j\right)\\
& =\frac{1}{z}\sum_{k=1}^{n}\left(\log^{k-1}z\right)\left(\prod_{j=n-k}^{n}z\uparrow^{2}j\right)
\end{align*}
ページ情報
タイトル | テトレーションの微分 |
URL | https://www.nomuramath.com/v7901c0r/ |
SNSボタン |
ハイバー演算子の定義
\[
H_{n}\left(a,b\right):=\begin{cases}
b+1 & n=0\\
a+b & n=1\\
\underbrace{a^{\left(n-1\right)}a^{\left(n-1\right)}\cdots a^{\left(n-1\right)}a}_{b\;copies\;of\;a} & n=2,3,\cdots
\end{cases}
\]
アッカーマン関数の定義と解
\[
A\left(m,n\right)=2\uparrow^{m-2}\left(n+3\right)-3
\]
コンウェイのチェーン表記の基本
\[
a\rightarrow0\rightarrow b=1-\delta_{0b}
\]
反復コンウェイのチェーン表記
\[
X\rightarrow\left(p+1\right)\rightarrow\left(q+1\right)=f^{p\circ}\left(X\right)
\]