3角関数3つでの積和公式・和積公式
3角関数3つでの積和公式・和積公式
3角関数について次が成り立つ。
3角関数について次が成り立つ。
(1)
\[ \sin A+\sin B+\sin C=4\sin\frac{B+C}{2}\sin\frac{C+A}{2}\sin\frac{A+B}{2}+\sin\left(A+B+C\right) \](2)
\[ \sin A\sin B\sin C=\frac{1}{4}\left\{ \sin\left(A+B+C\right)+\sin\left(-A+B+C\right)+\sin\left(A-B+C\right)+\sin\left(A+B-C\right)\right\} \](3)
\[ \cos A+\cos B+\cos C=4\cos\frac{B+C}{2}\cos\frac{C+A}{2}\cos\frac{A+B}{2}-\cos\left(A+B+C\right) \](4)
\[ \cos A\cos B\cos C=\frac{1}{4}\left\{ \cos\left(A+B+C\right)+\cos\left(-A+B+C\right)+\cos\left(A-B+C\right)+\cos\left(A+B-C\right)\right\} \](5)
\[ \tan\left(A+B+C\right)=\frac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A} \](6)
\[ \tan^{-1}\left(A+B+C\right)=\frac{\tan^{-1}A+\tan^{-1}B+\tan^{-1}C-\tan^{-1}A\tan^{-1}B\tan^{-1}C}{1-\tan^{-1}A\tan^{-1}B-\tan^{-1}B\tan^{-1}C-\tan^{-1}C\tan^{-1}A} \](1)
\begin{align*} \sin A+\sin B+\sin C & =\sin A+\sin B+\sin C-\sin\left(A+B+C\right)+\sin\left(A+B+C\right)\\ & =2\sin\frac{A+B}{2}\cos\frac{A-B}{2}+\sin\left(-\frac{A+B}{2}\right)\cos\frac{A+B+2C}{2}+\sin\left(A+B+C\right)\\ & =2\sin\frac{A+B}{2}\left(\cos\frac{A-B}{2}-\cos\frac{A+B+2C}{2}\right)+\sin\left(A+B+C\right)\\ & =2\sin\frac{A+B}{2}\left\{ -2\sin\frac{A+C}{2}\sin\left(-\frac{B+C}{2}\right)\right\} +\sin\left(A+B+C\right)\\ & =4\sin\frac{B+C}{2}\sin\frac{C+A}{2}\sin\frac{A+B}{2}+\sin\left(A+B+C\right) \end{align*}(2)
\begin{align*} \sin A\sin B\sin C & =-\frac{1}{2}\left\{ \cos\left(A+B\right)-\cos\left(A-B\right)\right\} \sin C\\ & =-\frac{1}{2}\left\{ \frac{1}{2}\left\{ \sin\left(A+B+C\right)+\sin\left(C-A-B\right)\right\} -\frac{1}{2}\left\{ \sin\left(A-B+C\right)+\sin\left(C-A+B\right)\right\} \right\} \\ & =\frac{1}{4}\left\{ \sin\left(A+B+C\right)+\sin\left(-A+B+C\right)+\sin\left(A-B+C\right)+\sin\left(A+B-C\right)\right\} \end{align*}(3)
\begin{align*} \cos A+\cos B+\cos C & =\cos A+\cos B+\cos C+\cos\left(A+B+C\right)-\cos\left(A+B+C\right)\\ & =2\cos\frac{A+B}{2}\cos\frac{A-B}{2}+2\cos\frac{A+B+2C}{2}\cos\left(-\frac{A+B}{2}\right)-\cos\left(A+B+C\right)\\ & =2\cos\frac{A+B}{2}\left(\cos\frac{A-B}{2}+\cos\frac{A+B+2C}{2}\right)-\cos\left(A+B+C\right)\\ & =2\cos\frac{A+B}{2}\left(2\cos\frac{A+C}{2}\cos\left(-\frac{B+C}{2}\right)\right)-\cos\left(A+B+C\right)\\ & =4\cos\frac{B+C}{2}\cos\frac{C+A}{2}\cos\frac{A+B}{2}-\cos\left(A+B+C\right) \end{align*}(4)
\begin{align*} \cos A\cos B\cos C & =\frac{1}{2}\left\{ \cos\left(A+B\right)+\cos\left(A-B\right)\right\} \cos C\\ & =\frac{1}{2}\left\{ \frac{1}{2}\left\{ \cos\left(A+B+C\right)+\cos\left(A+B-C\right)\right\} +\frac{1}{2}\left\{ \cos\left(A-B+C\right)+\cos\left(A-B-C\right)\right\} \right\} \\ & =\frac{1}{4}\left\{ \cos\left(A+B+C\right)+\cos\left(-A+B+C\right)+\cos\left(A-B+C\right)+\cos\left(A+B-C\right)\right\} \end{align*}(5)
\begin{align*} \tan\left(A+B+C\right) & =\frac{\tan\left(A+B\right)+\tan C}{1-\tan\left(A+B\right)\tan C}\\ & =\frac{\frac{\tan A+\tan B}{1-\tan A\tan B}+\tan C}{1-\frac{\tan A+\tan B}{1-\tan A\tan B}\tan C}\\ & =\frac{\frac{\tan A+\tan B}{1-\tan A\tan B}+\tan C}{1-\frac{\tan A+\tan B}{1-\tan A\tan B}\tan C}\\ & =\frac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A} \end{align*}(6)
\begin{align*} \tan^{-1}\left(A+B+C\right) & =\left(\frac{\tan A+\tan B+\tan C-\tan A\tan B\tan C}{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}\right)^{-1}\\ & =\frac{1-\tan A\tan B-\tan B\tan C-\tan C\tan A}{\tan A+\tan B+\tan C-\tan A\tan B\tan C}\\ & =\frac{\tan^{-1}A\tan^{-1}B\tan^{-1}C-\tan^{-1}C-\tan^{-1}A-\tan^{-1}B}{\tan^{-1}B\tan^{-1}C+\tan^{-1}C\tan^{-1}A+\tan^{-1}A\tan^{-1}B-1}\\ & =\frac{\tan^{-1}A+\tan^{-1}B+\tan^{-1}C-\tan^{-1}A\tan^{-1}B\tan^{-1}C}{1-\tan^{-1}A\tan^{-1}B-\tan^{-1}B\tan^{-1}C-\tan^{-1}C\tan^{-1}A} \end{align*}ページ情報
タイトル | 3角関数3つでの積和公式・和積公式 |
URL | https://www.nomuramath.com/vkz9ocm3/ |
SNSボタン |
三角関数(双曲線関数)の逆三角関数(逆双曲線関数)が恒等写像になる条件
\[
\sin^{\bullet}\sin z=?z
\]
逆三角関数と逆双曲線関数の負角
\[
\Sin^{\bullet}\left(-z\right)=-\Sin^{\bullet}z
\]
逆三角関数と逆双曲線関数の対数表示
\[
\Sin^{\bullet}z=-i\Log\left(iz+\sqrt{1-z^{2}}\right)
\]
双曲線関数と三角関数の級数展開
\[
\tanh x=\sum_{k=1}^{\infty}\frac{2^{2k}\left(2^{2k}-1\right)B_{2k}}{(2k)!}x{}^{2k-1}
\]