ウォリス積分の同表示
ウォリス積分は以下の値に等しい
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\[ \int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta \]
\begin{align*}
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\int_{0}^{\frac{\pi}{2}}\cos^{n}\left(\theta-\frac{\pi}{2}\right)d\theta\\
& =\int_{0}^{\frac{\pi}{2}}\cos^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}
\end{align*}
ページ情報
タイトル | ウォリス積分の同表示 |
URL | https://www.nomuramath.com/vyufzw14/ |
SNSボタン |
ベルヌーイ数とリーマンゼータ関数
\[
B_{2n}=(-1)^{n+1}\frac{2(2n)!}{(2\pi)^{2n}}\zeta(2n)
\]
対数の指数
\[
a^{\log_{b}c}=c^{\log_{b}a}
\]
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]
2重根号
\[
\sqrt{a\pm|b|\sqrt{c}}=\frac{\sqrt{2}}{2}\left(\sqrt{a+\sqrt{a^{2}-b^{2}c}}\pm\sqrt{a-\sqrt{a^{2}-b^{2}c}}\right)
\]