独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
| タイトル | 独立と無相関の定義 |
| URL | https://www.nomuramath.com/w7lzj5zq/ |
| SNSボタン |
相加平均・相乗平均・調和平均・一般化平均の定義
\[
\mu_{A}=\frac{1}{n}\sum_{k=1}^{n}x_{k}
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]
期待値の基本的性質
\[
E(XY)=E(X)E(Y)+Cov(X,Y)
\]
マルコフの不等式
\[
P\left(\left|X\right|\geq\epsilon\right)\leq\frac{E\left(\left|X\right|\right)}{\epsilon}
\]

