独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
タイトル | 独立と無相関の定義 |
URL | https://www.nomuramath.com/w7lzj5zq/ |
SNSボタン |
期待値の基本的性質
\[
E(XY)=E(X)E(Y)+Cov(X,Y)
\]
相補誤差関数と虚数誤差関数の表示
\[
erfc(x)=\frac{2}{\sqrt{\pi}}\int_{x}^{\infty}e^{-t^{2}}dt
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]