独立と無相関の定義
\(X,Y\)を確率変数とする。
(1)独立
\[ P\left(X=x,Y=y\right)=P(X=x)P(Y=y) \] のとき独立という。(2)無相関
\[ Cov(X,Y)=0 \] のとき無相関という。ページ情報
タイトル | 独立と無相関の定義 |
URL | https://www.nomuramath.com/w7lzj5zq/ |
SNSボタン |
誤差関数・相補誤差関数・虚数誤差関数の定義
\[
erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt
\]
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
相加平均・相乗平均・調和平均の関係
\[
\mu_{H}\left(x_{1},x_{2}\right)=\frac{\mu_{G}^{\;2}\left(x_{1},x_{2}\right)}{\mu_{A}\left(x_{1},x_{2}\right)}
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]