γとπが出てくる定積分
γとπが出てくる定積分
\[ \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=? \]
\[ \int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx=? \]
\begin{align*}
\int_{0}^{\infty}e^{-x}\log^{2}\left(x\right)dx & =\left[\frac{d^{2}}{dt^{2}}\int_{0}^{\infty}e^{-x}x^{t}dx\right]_{t=0}\\
& =\left[\frac{d^{2}}{dt^{2}}\Gamma\left(t+1\right)\right]_{t=0}\\
& =\left[\frac{d}{dt}\Gamma\left(t+1\right)\frac{d}{dt}\log\left(\Gamma\left(t+1\right)\right)\right]_{t=0}\\
& =\left[\frac{d}{dt}\Gamma\left(t+1\right)\psi\left(t+1\right)\right]_{t=0}\\
& =\left[\psi\left(t+1\right)\frac{d}{dt}\Gamma\left(t+1\right)+\Gamma\left(t+1\right)\frac{d}{dt}\psi\left(t+1\right)\right]_{t=0}\\
& =\left[\psi\left(t+1\right)\Gamma\left(t+1\right)\psi\left(t+1\right)+\Gamma\left(t+1\right)\psi^{\left(1\right)}\left(t+1\right)\right]_{t=0}\\
& =\left[\Gamma\left(t+1\right)\left(\psi^{2}\left(t+1\right)+\psi^{\left(1\right)}\left(t+1\right)\right)\right]_{t=0}\\
& =\psi^{2}\left(1\right)+\psi^{\left(1\right)}\left(1\right)\\
& =\left(-\gamma\right)^{2}-\left(-1\right)^{1}1!\zeta\left(1+1\right)\\
& =\gamma^{2}+\zeta\left(2\right)\\
& =\gamma^{2}+\frac{\pi^{2}}{6}
\end{align*}
ページ情報
タイトル | γとπが出てくる定積分 |
URL | https://www.nomuramath.com/wioj9afq/ |
SNSボタン |
複素ガンマ関数2つを含む広義積分
\[
\int_{-\infty}^{\infty}\Gamma\left(1-ix\right)\Gamma\left(1+ix\right)dx=?
\]
分母の2乗をどうするかな?
\[
\int_{0}^{\infty}\frac{x^{2}}{\left(1+e^{x}\right)^{2}}dx=?
\]
tanの平方根の積分
\[
\int\sqrt{\tan x}dx=\frac{\sqrt{2}}{4}\log\left(\tan x-\sqrt{2\tan x}+1\right)-\frac{\sqrt{2}}{4}\log\left(\tan x+\sqrt{2\tan x}+1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}-1\right)+\frac{\sqrt{2}}{2}\tan^{\bullet}\left(\sqrt{2\tan x}+1\right)+C
\]
分母に(1+x²)²を含む積分
\[
\int\frac{1}{\left(1+x^{2}\right)^{2}}dx=\frac{1}{2}\tan^{\bullet}x+\frac{x}{2\left(1+x^{2}\right)}+C
\]