偏角・対数と絶対値
偏角・対数と絶対値
\(\alpha\ne0\)とする。
\(\alpha\ne0\)とする。
(1)
\[ \Arg\left(\left|\alpha\right|\beta\right)=\Arg\beta \](2)
\[ \Log\left(\left|\alpha\right|\beta\right)=\ln\left|\alpha\right|+\Log\beta \](1)
\begin{align*} \Arg\left(\left|\alpha\right|\beta\right) & =-i\Log\left(\sgn\left(\left|\alpha\right|\beta\right)\right)\\ & =-i\Log\left(\sgn\left(\beta\right)\right)\\ & =\Arg\beta \end{align*}(2)
\begin{align*} \Log\left(\left|\alpha\right|\beta\right) & =\ln\left|\left|\alpha\right|\beta\right|+\Log\sgn\left(\left|\alpha\right|\beta\right)\\ & =\ln\left|\alpha\right|+\ln\left|\beta\right|+\Log\sgn\left(\beta\right)\\ & =\ln\left|\alpha\right|+\Log\beta \end{align*}ページ情報
タイトル | 偏角・対数と絶対値 |
URL | https://www.nomuramath.com/wrmjwxo9/ |
SNSボタン |
逆数の偏角と対数
\[
\Arg z^{-1}=-\Arg z+2\pi\delta_{\pi,\Arg\left(z\right)}
\]
複素指数関数の極形式
\[
\alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}
\]
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]
複素数の冪関数の定義
\[
\alpha^{\beta}=e^{\beta\log\alpha}
\]