ゼータ関数とイータ関数の関係
ゼータ関数とイータ関数は以下の関係がある。
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\[ \eta(s)=(1-2^{1-s})\zeta(s) \]
\begin{align*}
\eta(s) & =\sum_{k=1}^{^{\infty}}(-1)^{k+1}k^{-s}\\
& =\sum_{k=1}^{^{\infty}}(-1)^{2k+1}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(-1)^{2k}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}(2k-1)^{-s}\\
& =-\sum_{k=1}^{^{\infty}}(2k)^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}-\sum_{k=1}^{^{\infty}}(2k)^{-s}\\
& =-2^{1-s}\sum_{k=1}^{^{\infty}}k^{-s}+\sum_{k=1}^{^{\infty}}k^{-s}\\
& =(1-2^{1-s})\zeta(s)
\end{align*}
ページ情報
タイトル | ゼータ関数とイータ関数の関係 |
URL | https://www.nomuramath.com/wsvsj63f/ |
SNSボタン |
偶数ゼータ・奇数ゼータ・ゼータの総和
\[
\sum_{k=2}^{\infty}\left(\zeta\left(k\right)-1\right)=1
\]
リーマン・ゼータ関数とディリクレ・イータ関数の定義
\[
\zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}}
\]
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束
ゼータ関数の交代級数
\[
\sum_{k=1}^{\infty}\left(\zeta\left(2k\right)-\zeta\left(2k+1\right)\right)=\frac{1}{2}
\]