交代式の因数分解
交代式の因数分解
\(n\)変数\(x_{1},\cdots,x_{n}\)の交代式\(f\left(x_{1},\cdots,x_{n}\right)\)は差積\(\Delta\left(x_{1},\cdots,x_{n}\right)\)を因数に持ち、残りの因数は対称式となる。
すなわち、
\[ \text{交代式}=\text{差積}\times\text{対称式} \] となる。
\(n\)変数\(x_{1},\cdots,x_{n}\)の交代式\(f\left(x_{1},\cdots,x_{n}\right)\)は差積\(\Delta\left(x_{1},\cdots,x_{n}\right)\)を因数に持ち、残りの因数は対称式となる。
すなわち、
\[ \text{交代式}=\text{差積}\times\text{対称式} \] となる。
交代式なので、
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)=-f\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \] が成り立つ。
\(x_{i}=x_{j}\)を代入すると、
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right)=-f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right) \] となるので、
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right)=0 \] 因数定理より、\(\left(x_{i}-x_{j}\right)\)を因数に持つ。
他の変数についても同様のことをすると、差積\(\Delta\left(x_{1},\cdots,x_{n}\right)\)を因数にもつ。
残りの因数を\(g\left(x_{1},\cdots,x_{n}\right)\)とすると、
\begin{align*} \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right) & =f\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\\ & =-f\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\\ & =-\Delta\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\\ & =\Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \end{align*} これより、
\[ \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\left\{ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)-g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\right\} =0 \] となり、
\[ \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\ne0 \] なので、
\[ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)-g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)=0 \] となる。すなわち
\[ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)=g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \] であるので、\(g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\)は\(x_{i}\)と\(x_{j}\)について対称になる。
他の任意の2変数についても同様に対称になるので\(g\left(x_{1},\cdots,x_{n}\right)\)は対称式となる。
故に題意は成り立つ。
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)=-f\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \] が成り立つ。
\(x_{i}=x_{j}\)を代入すると、
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right)=-f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right) \] となるので、
\[ f\left(x_{1},\cdots,x_{i},\cdots,x_{i},\cdots x_{n}\right)=0 \] 因数定理より、\(\left(x_{i}-x_{j}\right)\)を因数に持つ。
他の変数についても同様のことをすると、差積\(\Delta\left(x_{1},\cdots,x_{n}\right)\)を因数にもつ。
残りの因数を\(g\left(x_{1},\cdots,x_{n}\right)\)とすると、
\begin{align*} \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right) & =f\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\\ & =-f\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\\ & =-\Delta\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\\ & =\Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \end{align*} これより、
\[ \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\left\{ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)-g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)\right\} =0 \] となり、
\[ \Delta\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\ne0 \] なので、
\[ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)-g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right)=0 \] となる。すなわち
\[ g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)=g\left(x_{1},\cdots,x_{j},\cdots,x_{i},\cdots x_{n}\right) \] であるので、\(g\left(x_{1},\cdots,x_{i},\cdots,x_{j},\cdots x_{n}\right)\)は\(x_{i}\)と\(x_{j}\)について対称になる。
他の任意の2変数についても同様に対称になるので\(g\left(x_{1},\cdots,x_{n}\right)\)は対称式となる。
故に題意は成り立つ。
ページ情報
タイトル | 交代式の因数分解 |
URL | https://www.nomuramath.com/x13rems0/ |
SNSボタン |
複二次式の定義と因数分解
\[
a_{4}x^{4}+a_{2}x^{2}+a_{0}=\frac{1}{4a_{4}}\left(2a_{4}x^{2}+a_{2}+\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)\left(2a_{4}x^{2}+a_{2}-\sqrt{a_{2}^{\;2}-4a_{4}a_{0}}\right)
\]
差積の定義と性質
\[
\Delta\left(x_{1},\cdots,x_{n}\right):=\prod_{1\leq i<j\leq n}\left(x_{i}-x_{j}\right)
\]
ビネ・コーシーとラグランジュの恒等式
\[
\left(\sum_{i=1}^{n}a_{i}c_{i}\right)\left(\sum_{j=1}^{n}b_{j}d_{j}\right)-\left(\sum_{i=1}^{n}a_{i}d_{i}\right)\left(\sum_{j=1}^{n}b_{j}c_{j}\right)=\sum_{1\leq i<j\leq n}\left(a_{i}b_{j}-a_{j}b_{i}\right)\left(c_{i}d_{j}-c_{j}d_{i}\right)
\]
n乗根の因数分解
\[
z^{n}-1=\prod_{k=1}^{n}\left(z-e^{\frac{2\pi}{n}ki}\right)
\]