剰余演算の実部と虚部

剰余演算の実部と虚部

(1)剰余演算表示

\[ \mod\left(\alpha,\beta\right)=\Re\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)-\Im\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+i\left\{ \Re\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+\Im\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)\right\} \]

(2)床関数表示

\[ \mod\left(\alpha,\beta\right)=\Re\left(\alpha\right)-\beta\left\lfloor \frac{\Re\left(\alpha\right)\Re\left(\beta\right)+\Im\left(\alpha\right)\Im\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor +i\left(\Im\left(\alpha\right)-\beta\left\lfloor \frac{-\Re\left(\alpha\right)\Im\left(\beta\right)+\Im\left(\alpha\right)\Re\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor \right) \]

(3)天井関数表示

\[ \mod\left(\alpha,\beta\right)=\Re\left(\alpha\right)+\beta\left\lceil -\frac{\Re\left(\alpha\right)\Re\left(\beta\right)+\Im\left(\alpha\right)\Im\left(\beta\right)}{\left|\beta\right|^{2}}\right\rceil +i\left(\Im\left(\alpha\right)+\beta\left\lceil \frac{\Re\left(\alpha\right)\Im\left(\beta\right)-\Im\left(\alpha\right)\Re\left(\beta\right)}{\left|\beta\right|^{2}}\right\rceil \right) \]

-

\(\mod\left(\alpha,\beta\right)\)は剰余演算
\(\left\lfloor z\right\rfloor \)は床関数
\(\left\lceil z\right\rceil \)は天井関数

(1)

\begin{align*} \mod\left(\alpha,\beta\right) & =\beta\mod\left(\frac{\alpha}{\beta},1\right)\\ & =\Re\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)-\Im\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+i\left\{ \Re\left(\beta\right)\mod\left(\Im\left(\frac{\alpha}{\beta}\right),1\right)+\Im\left(\beta\right)\mod\left(\Re\left(\frac{\alpha}{\beta}\right),1\right)\right\} \end{align*}

(2)

\begin{align*} \mod\left(\alpha,\beta\right) & =\alpha-\beta\left\lfloor \frac{\alpha}{\beta}\right\rfloor \\ & =\alpha-\beta\left\lfloor \frac{\alpha\overline{\beta}}{\left|\beta\right|^{2}}\right\rfloor \\ & =\alpha-\beta\left(\left\lfloor \frac{\Re\left(\alpha\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor +i\left\lfloor \frac{\Im\left(\alpha\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor \right)\\ & =\alpha-\beta\left\lfloor \frac{\Re\left(\alpha\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor -i\beta\left\lfloor \frac{\Im\left(\alpha\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor \\ & =\alpha-\beta\left\lfloor \frac{\Re\left(\alpha\right)\Re\left(\overline{\beta}\right)-\Im\left(\alpha\right)\Im\left(\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor -i\beta\left\lfloor \frac{\Re\left(\alpha\right)\Im\left(\overline{\beta}\right)+\Im\left(\alpha\right)\Re\left(\overline{\beta}\right)}{\left|\beta\right|^{2}}\right\rfloor \\ & =\Re\left(\alpha\right)-\beta\left\lfloor \frac{\Re\left(\alpha\right)\Re\left(\beta\right)+\Im\left(\alpha\right)\Im\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor +i\left(\Im\left(\alpha\right)-\beta\left\lfloor \frac{-\Re\left(\alpha\right)\Im\left(\beta\right)+\Im\left(\alpha\right)\Re\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor \right) \end{align*}

(3)

\begin{align*} \mod\left(\alpha,\beta\right) & =\Re\left(\alpha\right)-\beta\left\lfloor \frac{\Re\left(\alpha\right)\Re\left(\beta\right)+\Im\left(\alpha\right)\Im\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor +i\left(\Im\left(\alpha\right)-\beta\left\lfloor \frac{-\Re\left(\alpha\right)\Im\left(\beta\right)+\Im\left(\alpha\right)\Re\left(\beta\right)}{\left|\beta\right|^{2}}\right\rfloor \right)\\ & =\Re\left(\alpha\right)+\beta\left\lceil -\frac{\Re\left(\alpha\right)\Re\left(\beta\right)+\Im\left(\alpha\right)\Im\left(\beta\right)}{\left|\beta\right|^{2}}\right\rceil +i\left(\Im\left(\alpha\right)+\beta\left\lceil \frac{\Re\left(\alpha\right)\Im\left(\beta\right)-\Im\left(\alpha\right)\Re\left(\beta\right)}{\left|\beta\right|^{2}}\right\rceil \right) \end{align*}

ページ情報
タイトル
剰余演算の実部と虚部
URL
https://www.nomuramath.com/x2qvkp7g/
SNSボタン