完備リーマンゼータ関数の関数等式
完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
ページ情報
タイトル | 完備リーマンゼータ関数の関数等式 |
URL | https://www.nomuramath.com/x2s85a76/ |
SNSボタン |
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
リーマンゼータ関数とガンマ関数の関係
\[
\zeta(s)=\pi^{s-1}2^{s}\sin\frac{s\pi}{2}\Gamma\left(1-s\right)\zeta(1-s)
\]
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束