完備リーマンゼータ関数の関数等式
完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
ページ情報
タイトル | 完備リーマンゼータ関数の関数等式 |
URL | https://www.nomuramath.com/x2s85a76/ |
SNSボタン |
フルヴィッツ・ゼータ関数の第2引数での微分とテーラー展開
\[
\frac{\partial^{n}}{\partial z^{n}}\zeta\left(s,z\right)=P\left(-s,n\right)\zeta\left(s+n,z\right)
\]
偶数ゼータの通常型母関数
\[
\sum_{k=1}^{\infty}\zeta(2k)x^{2k}=\frac{1}{2}\left(1-\pi x\tan^{-1}\left(\pi x\right)\right)
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数の非正整数値
\[
\zeta\left(-n,\alpha\right)=-\frac{1}{n+1}B_{n+1}\left(\alpha\right)
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]