完備リーマンゼータ関数の関数等式
完備リーマンゼータ関数
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
\[ \xi(s)=\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \]
完備リーマンゼータ関数の関数等式
\[ \xi(s)=\xi(1-s) \]
\[ \xi(s)=\xi(1-s) \]
リーマンゼータの関数等式
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
\[ \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{-\frac{1-s}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s) \] より明らかに成り立つ。
ページ情報
タイトル | 完備リーマンゼータ関数の関数等式 |
URL | https://www.nomuramath.com/x2s85a76/ |
SNSボタン |
すべての自然数の積(解析接続あり)
\[
\prod_{k=1}^{\infty}k=\sqrt{2\pi}
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
リーマン・ゼータ関数のローラン展開
\[
\zeta\left(s\right)=\frac{1}{s-1}-\frac{1}{2}-s\int_{1}^{n}\frac{t-\left\lfloor t\right\rfloor -\frac{1}{2}}{t^{s+1}}dt
\]