最大値・最小値と絶対値の関係
最大値・最小値と絶対値の関係
\(x\in\mathbb{R}\)とする。
\(x\in\mathbb{R}\)とする。
(1)
\[ \min\left(-x,x\right)=-\left|x\right| \](2)
\[ \max\left(-x,x\right)=\left|x\right| \](1)
\begin{align*} \min\left(-x,x\right) & =\begin{cases} -x & 0\leq x\\ x & x<0 \end{cases}\\ & =-\left|x\right| \end{align*}(2)
\begin{align*} \max\left(-x,x\right) & =\begin{cases} -x & x<0\\ x & 0\leq x \end{cases}\\ & =\left|x\right| \end{align*}ページ情報
タイトル | 最大値・最小値と絶対値の関係 |
URL | https://www.nomuramath.com/xcfbaj7y/ |
SNSボタン |
第2可算ならば第1可算
『漸化式の基本』を更新しました。
順序写像・単調写像・順序反映・順序埋め込み・順序同型写像の定義
\[
a\preceq_{X}b\Rightarrow f\left(a\right)\preceq_{Y}f\left(b\right)
\]
三角関数の合成
\[
a\sin\theta+b\cos\theta =\sqrt{a^{2}+b^{2}}\sin(\theta+\alpha)
\]