チェビシェフ多項式の昇降演算子
チェビシェフ多項式の昇降演算子
(1)
\[ \left(\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)T_{n}(x)=\mp nT_{n\pm1}(x) \](2)
\[ \left[\left(1-x^{2}\right)\left(n\pm1\right)\frac{d}{dx}\mp x\left(n\pm1\right)^{2}\right]U_{n-1}(x)=\mp n(n\pm1)U_{n-1\pm1}(x) \](1)
\begin{align*} \left(\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)T_{n}(x) & =n\left\{ \left(1-x^{2}\right)U_{n-1}(x)\mp xT_{n}(x)\right\} \\ & =n\left\{ \sin^{2}tU_{n-1}(\cos t)\mp\cos tT_{n}(\cos t)\right\} \qquad,\qquad x=\cos t\\ & =n\left\{ \sin t\sin(nt)\mp\cos t\cos(nt)\right\} \\ & =\mp n\left\{ \cos t\cos(nt)\mp\sin t\sin(nt)\right\} \\ & =\mp n\cos\left((n\pm1)t\right)\\ & =\mp nT_{n\pm1}(x) \end{align*}(2)
\begin{align*} \LHS & =\frac{d}{dx}\left(\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)T_{n}(x)\\ & =\left(-2x\frac{d}{dx}+\left(1-x^{2}\right)\frac{d^{2}}{dx^{2}}\mp n\mp nx\frac{d}{dx}\right)T_{n}(x)\\ & =\left(-2x+\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)nU_{n-1}(x)\mp nT_{n}(x)\\ & =\left(-2x+\left(1-x^{2}\right)\frac{d}{dx}\mp nx\right)nU_{n-1}(x)\mp\left(xU_{n-1}(x)-(1-x^{2})U_{n-1}'(x)\right)\\ & =\left[\left(1-x^{2}\right)\left(n\pm1\right)\frac{d}{dx}-x\left(2n\pm\left(n^{2}+1\right)\right)\right]U_{n-1}(x)\\ & =\left[\left(1-x^{2}\right)\left(n\pm1\right)\frac{d}{dx}\mp x\left(n\pm1\right)^{2}\right]U_{n-1}(x) \end{align*} \begin{align*} \RHS & =\frac{d}{dx}\left(\mp nT_{n\pm1}(x)\right)\\ & =\mp n(n\pm1)U_{n-1\pm1}(x) \end{align*} これより、\[ \left[\left(1-x^{2}\right)\left(n\pm1\right)\frac{d}{dx}\mp x\left(n\pm1\right)^{2}\right]U_{n-1}(x)=\mp n(n\pm1)U_{n-1\pm1}(x) \]
ページ情報
タイトル | チェビシェフ多項式の昇降演算子 |
URL | https://www.nomuramath.com/xfm5z13v/ |
SNSボタン |
第1種チェビシェフ多項式と第2種チェビシェフ多項式の関係
\[
nU_{n-1}(x)=T_{n}'(x)
\]
(*)チェビシェフ多項式のロドリゲス公式
\[
T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}}
\]
第1種・第2種と第3種チェビシェフ多項式同士の関係
\[
V(-x)=(-1)^{n}W_{n}(x)
\]
チェビシェフ多項式の母関数
\[
\sum_{k=0}^{\infty}T_{k}(x)t^{k}=\frac{1-tx}{1-2tx+t^{2}}
\]