無相関のときに成り立つ関係
確率変数\(X,Y\)が無相関のとき、
\[ E(XY)=E(X)E(Y) \] となる。
\[ E(XY)=E(X)E(Y) \] となる。
無相関のとき\(Cov(X,Y)=0\)となり、
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
ページ情報
タイトル | 無相関のときに成り立つ関係 |
URL | https://www.nomuramath.com/xgye7qg2/ |
SNSボタン |
共分散公式と分散公式
\[
Cov(X,Y)=E(XY)-E(X)E(Y)
\]
相関係数の基本的性質
\[
\rho(X,aY+b)=\rho(X,Y)
\]
マルコフの不等式
\[
P\left(\left|X\right|\geq\epsilon\right)\leq\frac{E\left(\left|X\right|\right)}{\epsilon}
\]
分散の基本的性質
\[
V\left(\sum_{i=1}^{n}a_{i}X_{i}\right)=\sum_{i,j}a_{i}a_{j}Cov\left(X_{i},X_{j}\right)
\]