無相関のときに成り立つ関係
確率変数\(X,Y\)が無相関のとき、
\[ E(XY)=E(X)E(Y) \] となる。
\[ E(XY)=E(X)E(Y) \] となる。
無相関のとき\(Cov(X,Y)=0\)となり、
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
\begin{align*} 0 & =Cov(X,Y)\\ & =E(XY)-E(X)E(Y) \end{align*} より、
\[ E(XY)=E(X)E(Y) \]
ページ情報
タイトル | 無相関のときに成り立つ関係 |
URL | https://www.nomuramath.com/xgye7qg2/ |
SNSボタン |
チェビシェフの不等式
\[
P(\left|X-\mu\right|\geq\epsilon)\leq\frac{V(X)}{\epsilon^{2}}
\]
誤差関数・相補誤差関数・虚数誤差関数の定義
\[
erf(x)=\frac{2}{\sqrt{\pi}}\int_{0}^{x}e^{-t^{2}}dt
\]
相加平均・相乗平均・調和平均の関係
\[
\mu_{H}\left(x_{1},x_{2}\right)=\frac{\mu_{G}^{\;2}\left(x_{1},x_{2}\right)}{\mu_{A}\left(x_{1},x_{2}\right)}
\]
大数の法則
\[
\lim_{n\rightarrow\infty}P(\left|Y_{n}-\mu\right|\geq\epsilon)=0
\]