完備距離空間の像は完備部分集合とは限らない
完備距離空間の像は完備部分集合とは限らない
完備距離空間\(\left(X,d_{X}\right)\)から距離空間\(\left(Y,d_{Y}\right)\)への連続写像\(f:X\rightarrow Y\)があるとき、\(f\left(X\right)\)は完備部分集合とは限らない。
完備距離空間\(\left(X,d_{X}\right)\)から距離空間\(\left(Y,d_{Y}\right)\)への連続写像\(f:X\rightarrow Y\)があるとき、\(f\left(X\right)\)は完備部分集合とは限らない。
反例で示す。
何故なら\(x_{n}=\frac{\pi}{2}-\frac{1}{n}\)とすると\(x_{n}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\)であるが、その収束先の\(\frac{\pi}{2}\)は\(\frac{\pi}{2}\notin\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\)だからである。
何故なら\(x_{n}=1-\frac{1}{n}\)とすると\(x_{n}\in\left(-1,1\right)\)であるが、その収束先の1は\(1\notin\left(-1,1\right)\)だからである。
-
完備距離空間と距離空間を\(\mathbb{R}\)とすると、\(\mathbb{R}\)は完備であるが連続写像\(f\left(x\right)=\tan^{\bullet}x\)の像は\(f\left(X\right)=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\)は完備ではない。何故なら\(x_{n}=\frac{\pi}{2}-\frac{1}{n}\)とすると\(x_{n}\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\)であるが、その収束先の\(\frac{\pi}{2}\)は\(\frac{\pi}{2}\notin\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\)だからである。
-
完備距離空間と距離空間を\(\mathbb{R}\)とすると、\(\mathbb{R}\)は完備であるが連続写像\(f\left(x\right)=\frac{x}{1+\left|x\right|}\)の像は\(f\left(X\right)=\left(-1,1\right)\)は完備ではない。何故なら\(x_{n}=1-\frac{1}{n}\)とすると\(x_{n}\in\left(-1,1\right)\)であるが、その収束先の1は\(1\notin\left(-1,1\right)\)だからである。
ページ情報
タイトル | 完備距離空間の像は完備部分集合とは限らない |
URL | https://www.nomuramath.com/xlzs3f6t/ |
SNSボタン |
距離空間ならば正規空間
部分距離空間・直積距離空間の定義
\[
d\left(P,Q\right)^{2}:=\sum_{k=1}^{n}d_{k}\left(p_{k},q_{k}\right)^{2}
\]
ε近傍(開球)の定義
\[
U\left(a,\epsilon\right)=\left\{ x\in X;d\left(a,x\right)<\epsilon\right\}
\]
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]