三角関数と双曲線関数の微分
三角関数の微分
(1)
\[ \frac{d}{dx}\sin x=\cos x \](2)
\[ \frac{d}{dx}\cos x=-\sin x \](3)
\[ \frac{d}{dx}\tan x=\cos^{-2}x \](4)
\[ \frac{d}{dx}\sin^{-1}x=-\sin^{-1}x\tan^{-1}x \](5)
\[ \frac{d}{dx}\cos^{-1}x=\cos^{-1}x\tan x \](6)
\[ \frac{d}{dx}\tan^{-1}x=-\sin^{-2}x \](1)
\begin{align*} \frac{d}{dx}\sin x & =\frac{d}{dx}\frac{e^{ix}-e^{-ix}}{2i}\\ & =\frac{ie^{ix}+ie^{-ix}}{2i}\\ & =\cos x \end{align*}(2)
\begin{align*} \frac{d}{dx}\cos x & =\frac{d}{dx}\frac{e^{ix}+e^{-ix}}{2}\\ & =\frac{ie^{ix}-ie^{-ix}}{2}\\ & =-\frac{e^{ix}-e^{-ix}}{2i}\\ & =-\sin x \end{align*}(3)
\begin{align*} \frac{d}{dx}\tan x & =\frac{d}{dx}\frac{\sin x}{\cos x}\\ & =\frac{(\sin x)'\cos x-\sin x(\cos x)'}{\cos^{2}x}\\ & =\frac{\cos^{2}x+\sin^{2}x}{\cos^{2}x}\\ & =\cos^{-2}x \end{align*}(4)
\begin{align*} \frac{d}{dx}\sin^{-1}x & =\frac{d\sin x}{dx}\frac{d\sin^{-1}x}{d\sin x}\\ & =\cos x(-\sin^{-2}x)\\ & =-\sin^{-1}x\tan^{-1}x \end{align*}(5)
\begin{align*} \frac{d}{dx}\cos^{-1}x & =\frac{d\cos x}{dx}\frac{d\cos^{-1}x}{d\cos x}\\ & =-\sin x(-\cos^{-2}x)\\ & =\cos^{-1}x\tan x \end{align*}(6)
\begin{align*} \frac{d}{dx}\tan^{-1}x & =\frac{d\tan x}{dx}\frac{d\tan^{-1}x}{d\tan x}\\ & =\cos^{-2}x(-\tan^{-2}x)\\ & =-\sin^{-2}x \end{align*}双曲線関数の微分
(1)
\[ \frac{d}{dx}\sinh x=\cosh x \](2)
\[ \frac{d}{dx}\cosh x=\sinh x \](3)
\[ \frac{d}{dx}\tanh x=\cosh^{-2}x \](4)
\[ \frac{d}{dx}\sinh^{-1}x=-\sinh^{-1}x\tanh^{-1}x \](5)
\[ \frac{d}{dx}\cosh^{-1}x=-\cosh^{-1}x\tanh x \](6)
\[ \frac{d}{dx}\tanh^{-1}x=-\sinh^{-2}x \](1)
\begin{align*} \frac{d}{dx}\sinh x & =-i\frac{d}{dx}\sin(ix)\\ & =\cos(ix)\\ & =\cosh x \end{align*}(2)
\begin{align*} \frac{d}{dx}\cosh x & =\frac{d}{dx}\cos(ix)\\ & =-i\sin(ix)\\ & =\sinh x \end{align*}(3)
\begin{align*} \frac{d}{dx}\tanh x & =-i\frac{d}{dx}\tan(ix)\\ & =\cos^{-2}(ix)\\ & =\cosh^{-2}x \end{align*}(4)
\begin{align*} \frac{d}{dx}\sinh^{-1}x & =i\frac{d}{dx}\sin^{-1}(ix)\\ & =\sin^{-1}(ix)\tan^{-1}(ix)\\ & =-\sinh^{-1}x\tanh^{-1}x \end{align*}(5)
\begin{align*} \frac{d}{dx}\cosh^{-1}x & =\frac{d}{dx}\cos^{-1}(ix)\\ & =i\cos^{-1}(ix)\tan(ix)\\ & =-\cosh^{-1}x\tanh x \end{align*}(6)
\begin{align*} \frac{d}{dx}\tanh^{-1}x & =i\frac{d}{dx}\tan^{-1}(ix)\\ & =\sin^{-2}(ix)\\ & =-\sinh^{-2}x \end{align*}ページ情報
タイトル | 三角関数と双曲線関数の微分 |
URL | https://www.nomuramath.com/xw1wbjdm/ |
SNSボタン |
逆正接関数・逆双曲線正接関数と多重対数関数の関係
\[
\Tan^{\bullet}z=\frac{i}{2}\left(-\Li_{1}\left(iz\right)+\Li_{1}\left(-iz\right)\right)
\]
正接関数・双曲線正接関数の多重対数関数表示
\[
\tan^{\pm1}z=i^{\pm1}\left(1+2\Li_{0}\left(\mp e^{2iz}\right)\right)
\]
逆三角関数と逆双曲線関数の負角
\[
\Sin^{\bullet}\left(-z\right)=-\Sin^{\bullet}z
\]
ピタゴラスの基本三角関数公式
\[
\cos^{2}x+\sin^{2}x=1
\]