外延的記法と内包的記法
外延的記法と内包的記法
例:
\[ \left\{ a,b,c\right\} \]
例:
\[ \left\{ x;P\left(x\right)\right\} \] \[ \left\{ x;x\text{は5以下の自然数}\right\} \]
(1)外延(がいえん)的記法
集合の要素を全て列挙する方法を外延的記法という。例:
\[ \left\{ a,b,c\right\} \]
(2)内包(ないほう)的記法
集合の要素を条件により記載する方法を内包的記法という。例:
\[ \left\{ x;P\left(x\right)\right\} \] \[ \left\{ x;x\text{は5以下の自然数}\right\} \]
\(\left\{ x;x\in\mathbb{N},P\left(x\right)\right\} \)でも\(\left\{ x\in\mathbb{N};P\left(x\right)\right\} \)でも同じである。
\(\left\{ a,b\right\} =\left\{ b,a\right\} \)のように順序は問わない。
\(\left\{ a,a,a\right\} =\left\{ a,a\right\} =\left\{ a\right\} \)のように同じ元が2つ以上あっても1つあるのと同じである。
\(x\)が集合\(A\)の元で条件\(B\left(x\right)\)を満たすとき、\(\left\{ x;x\in A,B\left(x\right)\right\} =\left\{ x\in A;B\left(x\right)\right\} \)となる。
\(\left\{ a,b\right\} =\left\{ b,a\right\} \)のように順序は問わない。
\(\left\{ a,a,a\right\} =\left\{ a,a\right\} =\left\{ a\right\} \)のように同じ元が2つ以上あっても1つあるのと同じである。
\(x\)が集合\(A\)の元で条件\(B\left(x\right)\)を満たすとき、\(\left\{ x;x\in A,B\left(x\right)\right\} =\left\{ x\in A;B\left(x\right)\right\} \)となる。
ページ情報
タイトル | 外延的記法と内包的記法 |
URL | https://www.nomuramath.com/y0p39z8p/ |
SNSボタン |
ヘヴィサイドの階段関数の複素積分表示
\[
H_{\frac{1}{2}}\left(x\right)=\frac{1}{2\pi i}\lim_{\epsilon\rightarrow0+}\int_{-\infty}^{\infty}\frac{1}{z-i\epsilon}e^{ixz}dz
\]
ルートiが無限に続くといくつになる?
\[
\sqrt{i\sqrt{i\sqrt{i\sqrt{\cdots}}}}=?
\]
3角関数・双曲線関数の無限乗積展開
\[
\sin\left(\pi z\right)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)
\]
ウォリス積分の定義
\[
\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta
\]