集合が同じで位相が異なる空間
集合が同じで位相が異なる空間
同じ集合で位相が異なる位相空間\(\left(X,\mathcal{O}_{1}\right),\left(X,\mathcal{O}_{2}\right)\)がある。
同じ集合で位相が異なる位相空間\(\left(X,\mathcal{O}_{1}\right),\left(X,\mathcal{O}_{2}\right)\)がある。
(1)
\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)は位相、すなわち\(\left(X,\mathcal{O}_{1}\cap\mathcal{O}_{2}\right)\)は位相空間となる。(2)
\(\mathcal{O}_{1}\cup\mathcal{O}_{2}\)は一般的に位相とならない。(1)
\(\mathcal{O}_{1}\)にも\(\mathcal{O}_{2}\)にも空集合\(\emptyset\)と全体集合\(X\)が含まれているので、\(\emptyset,X\in\)\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)となる。\(O_{1},O_{2}\in\)\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)とすると、\(O_{1},O_{2}\in\)\(\mathcal{O}_{1}\)なので\(O_{1}\cap O_{2}\in\)\(\mathcal{O}_{1}\)となり、同様に\(O_{1}\cap O_{2}\in\)\(\mathcal{O}_{2}\)となるので\(O_{1}\cap O_{2}\in\)\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)となる。
\(\mathcal{O}\subseteq\mathcal{O}_{1}\cap\mathcal{O}_{2}\)とすると、\(\mathcal{O}\subseteq\mathcal{O}_{1}\)なので\(\bigcup\mathcal{O}\subseteq\mathcal{O}_{1}\)となり、同様に\(\bigcup\mathcal{O}\subseteq\mathcal{O}_{2}\)となり、\(\bigcup\mathcal{O}\in\)\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)となる。
これらより、位相であるための条件を満たしているので\(\mathcal{O}_{1}\cap\mathcal{O}_{2}\)は位相となる。
(2)
反例で示す。2つの位相空間を\(\left(\left\{ a,b,c\right\} ,\left\{ \emptyset,\left\{ a,b\right\} ,\left\{ a,b,c\right\} \right\} \right),\left(\left\{ a,b,c\right\} ,\left\{ \emptyset,\left\{ b,c\right\} ,\left\{ a,b,c\right\} \right\} \right)\)とすると、\(\left\{ \emptyset,\left\{ a,b\right\} ,\left\{ a,b,c\right\} \right\} \cup\left\{ \emptyset,\left\{ b,c\right\} ,\left\{ a,b,c\right\} \right\} =\left\{ \emptyset,\left\{ a,b\right\} ,\left\{ b,c\right\} ,\left\{ a,b,c\right\} \right\} \)となるが、\(\left\{ a,b\right\} \cap\left\{ b,c\right\} =\left\{ b\right\} \)が位相に入っていない。
故に\(\mathcal{O}_{1}\cup\mathcal{O}_{2}\)は一般的に位相とならない。
ページ情報
タイトル | 集合が同じで位相が異なる空間 |
URL | https://www.nomuramath.com/ybq15255/ |
SNSボタン |
展開はしないほうがいいです
\[
\left(x+y\right)^{2}\left(xy-1\right)+1\text{を因数分解}
\]
櫛型関数の定義
\[
\mathrm{comb}_{T}\left(x\right)=\sum_{n=-\infty}^{\infty}\delta\left(x-Tn\right)
\]
フィボナッチ数の負整数での値
\[
F_{-n}=\left(-1\right)^{n+1}F_{n}
\]
[2016年京都大学・数学問2]シンプルな整数問題
$p,q$を素数として$p^{q}+q^{p}$が素数となる全ての値を求めよ。