max・min関数の性質
max・min関数の性質
(1)
\[ \max\left(a,b\right)=\frac{1}{2}\left(a+b+\left|a-b\right|\right) \](2)
\[ \min\left(a,b\right)=\frac{1}{2}\left(a+b-\left|a-b\right|\right) \](3)
\[ \max\left(a,b\right)=-\min\left(-a,-b\right) \](4)
\[ \min\left(a,b\right)=-\max\left(-a,-b\right) \](5)
\[ \max\left(\left|ca\right|,\left|cb\right|\right)=\left|c\right|\max\left(\left|a\right|,\left|b\right|\right) \](6)
\[ \min\left(\left|ca\right|,\left|cb\right|\right)=\left|c\right|\min\left(\left|a\right|,\left|b\right|\right) \](1)(2)
\[ a+b=\max\left(a,b\right)+\min\left(a,b\right) \] \[ \left|a-b\right|=\max\left(a,b\right)-\min\left(a,b\right) \] これより、\[ \max\left(a,b\right)=\frac{1}{2}\left(a+b+\left|a-b\right|\right) \] \[ \min\left(a,b\right)=\frac{1}{2}\left(a+b-\left|a-b\right|\right) \] が成り立つ。
(3)
\begin{align*} -\min\left(-a,-b\right) & =-\frac{1}{2}\left(-a+-b-\left|-a+b\right|\right)\\ & =\frac{1}{2}\left(a+b+\left|a-b\right|\right)\\ & =\max\left(a,b\right) \end{align*}(4)
(3)より、\[ -\max\left(-a,-b\right)=\max\left(a,b\right) \] となる。
(5)
\begin{align*} \max\left(\left|ca\right|,\left|cb\right|\right) & =\frac{1}{2}\left(\left|ca\right|+\left|cb\right|+\left|\left|ca\right|-\left|cb\right|\right|\right)\\ & =\left|c\right|\frac{1}{2}\left(\left|a\right|+\left|b\right|+\left|\left|a\right|-\left|b\right|\right|\right)\\ & =\left|c\right|\max\left(\left|a\right|,\left|b\right|\right) \end{align*}(6)
(5)と同様にすればいい。ページ情報
タイトル | max・min関数の性質 |
URL | https://www.nomuramath.com/ybxi9fx8/ |
SNSボタン |
単位分数とエジプト式分数の定義
\[
\frac{1}{2},\frac{1}{3},\frac{1}{4}
\]
エジプト式分数表示
任意の正の真分数はエジプト式分数で表せる。
有理数全体の集合
\[
f\left(x\right)=\frac{1}{\left\lfloor x\right\rfloor +1-\left\{ x\right\} }
\]
分母に1次式がある方程式の厳密解
\[
\frac{a}{bx-c}=d\Leftrightarrow\begin{cases}
x=\frac{a+cd}{bd} & a\ne0\land b\ne0\land d\ne0\\
x\in\mathbb{R} & b=0\land c\ne0\land a+cd=0\\
x\in\mathbb{R}\setminus\left\{ \frac{c}{b}\right\} & a=0\land b\ne0\land d=0\\
x\in\emptyset & \left(a=0\land b\ne0\land d\ne0\right)\lor\left(b=0\land c=0\right)\lor\left(b=0\land c\ne0\land a+cd\ne0\right)\lor\left(a\ne0\land d=0\right)
\end{cases}
\]