合成関数の微分
合成関数の微分
(1)合成関数の微分
\[ \frac{df(g(x))}{dx}=f'(g(x))g'(x) \](2)2つの合成関数
\[ \frac{df\left(g(x),h(x)\right)}{dx}=\frac{\partial f\left(g(x),h(x)\right)}{\partial g(x)}g'(x)+\frac{\partial f\left(g(x),h(x)\right)}{\partial h(x)}h'(x) \](1)
\begin{align*} \frac{df\left(g(x)\right)}{dx} & =\lim_{\Delta x\rightarrow0}\frac{f\left(g(x+\Delta x)\right)-f\left(g(x)\right)}{\Delta x}\\ & =\lim_{\Delta x\rightarrow0}\frac{f\left(g(x+\Delta x)\right)-f\left(g(x)\right)}{g(x+\Delta x)-g(x)}\frac{g(x+\Delta x)-g(x)}{\Delta x}\\ & =\lim_{\Delta x\rightarrow0}\frac{f\left(g(x)+\Delta g(x)\right)-f\left(g(x)\right)}{\Delta g(x)}\frac{g(x+\Delta x)-g(x)}{\Delta x}\cmt{\Delta g(x)=g(x+\Delta x)-g(x)}\\ & =f'(g(x))g'(x) \end{align*}(2)
\begin{align*} \frac{df\left(g(x),h(x)\right)}{dx} & =\lim_{\Delta x\rightarrow0}\frac{f\left(g(x+\Delta x),h(x+\Delta x)\right)-f\left(g(x),h(x)\right)}{\Delta x}\\ & =\lim_{\Delta x\rightarrow0}\frac{f\left(g(x+\Delta x),h(x+\Delta x)\right)-f\left(g(x),h(x+\Delta x)\right)+f\left(g(x),h(x+\Delta x)\right)-f\left(g(x),h(x)\right)}{\Delta x}\\ & =\lim_{\Delta x\rightarrow0}\left(\frac{f\left(g(x+\Delta x),h(x+\Delta x)\right)-f\left(g(x),h(x+\Delta x)\right)}{g(x+\Delta x)-g(x)}\frac{g(x+\Delta x)-g(x)}{\Delta x}+\frac{f\left(g(x),h(x+\Delta x)\right)-f\left(g(x),h(x)\right)}{h(x+\Delta x)-h(x)}\frac{h(x+\Delta x)-h(x)}{\Delta x}\right)\\ & =\lim_{\Delta x\rightarrow0}\left(\frac{f\left(g(x)+\Delta g,h(x+\Delta x)\right)-f\left(g(x),h(x+\Delta x)\right)}{\Delta g}\frac{g(x+\Delta x)-g(x)}{\Delta x}+\frac{f\left(g(x),h(x)+\Delta h\right)-f\left(g(x),h(x)\right)}{\Delta h}\frac{h(x+\Delta x)-h(x)}{\Delta x}\right)\\ & =\frac{\partial f\left(g(x),h(x)\right)}{\partial g(x)}g'(x)+\frac{\partial f\left(g(x),h(x)\right)}{\partial h(x)}h'(x) \end{align*}ページ情報
タイトル | 合成関数の微分 |
URL | https://www.nomuramath.com/yiyx4pbk/ |
SNSボタン |
ライプニッツの法則
\[
\left(fg\right)^{(n)}=\sum_{k=0}^{n}C(n,k)f^{(k)}g^{(n-k)}
\]
べき乗を含む0から∞までの定積分
\[
\Arg\left(\alpha\right)\ne\pi,0<b\Rightarrow\int_{0}^{\infty}f\left(x,\alpha x^{b}\right)dx=\frac{1}{\alpha^{\frac{1}{b}}b}\lim_{R\rightarrow\infty}\int_{0}^{Re^{i\Arg\left(\alpha\right)}}f\left(\frac{t^{\frac{1}{b}}}{\alpha^{\frac{1}{b}}},t\right)t^{\frac{1}{b}-1}dt
\]
基本関数の微分
\[
\left(a^{x}\right)'=a^{x}\log a
\]
対数を含む積分
\[
\int\log\left(x\right)f\left(x\right)dx=\left[\frac{d}{dt}\int x^{t}f\left(x\right)dx\right]_{t=0}
\]