eの冪乗の基本
eの冪乗の基本
(1)
\[ e^{\alpha+\beta}=e^{\alpha}e^{\beta} \](2)
\[ e^{x+iy}=e^{x}\left(\cos y+i\sin y\right) \](1)
\begin{align*} e^{\alpha+\beta} & =\sum_{k=0}^{\infty}\frac{\left(\alpha+\beta\right)^{k}}{k!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{k}C(k,j)\frac{\alpha^{j}\beta^{k-j}}{k!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{k}\frac{\alpha^{j}\beta^{k-j}}{j!(k-j)!}\\ & =\sum_{k=0}^{\infty}\sum_{j=0}^{\infty}\frac{\alpha^{j}\beta^{k}}{j!k!}\\ & =\sum_{j=0}^{\infty}\frac{\alpha^{j}}{j!}\sum_{k=0}^{\infty}\frac{\beta^{k}}{k!}\\ & =e^{\alpha}e^{\beta} \end{align*}(2)
\begin{align*} e^{x+iy} & =e^{x}e^{iy}\cmt{\text{(1)より}}\\ & =e^{x}\left(\cos y+i\sin y\right) \end{align*}ページ情報
タイトル | eの冪乗の基本 |
URL | https://www.nomuramath.com/yp1rdsbv/ |
SNSボタン |
複素指数関数の極形式
\[
\alpha^{\beta}=\left|\alpha\right|^{\Re\left(\beta\right)}e^{-\Im\left(\beta\right)\arg\alpha}e^{i\left(\Im\left(\beta\right)\ln\left|\alpha\right|+\Re\left(\beta\right)\arg\alpha\right)}
\]
負数の偏角と対数
\[
\Arg\alpha-\Arg\left(-\alpha\right)=2\pi H_{0}\left(\Arg\left(\alpha\right)\right)-\pi
\]
対数の指数exp(Log(z))と指数の対数Log(exp(z))の違い
\[
\Re\left(z\right)+i\mod\left(\Im\left(z\right),-2\pi,\pi\right)=\Log\left(\exp\left(z\right)\right)
\]
対数と偏角の性質
\[
\log\alpha^{\beta}=\beta\log\alpha+\log1
\]