空集合の定義と性質
空集合の定義と性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
(1)
空集合は唯1つ存在する。任意の元\(x\)に対し、\(x\notin\emptyset\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
(1)
空集合が\(\emptyset_{1},\emptyset_{2}\)の2つあり\(\emptyset_{1}\ne\emptyset_{2}\)と仮定する。このとき、任意の集合\(A\)に対し\(\emptyset_{1}\subseteq A\)が成り立つので\(A\)に\(\emptyset_{2}\)を代入すると、\(\emptyset_{1}\subseteq\emptyset_{2}\)となる。
同様に\(\emptyset_{2}\subseteq\emptyset_{1}\)が成り立つ。
これより、\(\emptyset_{1}\subseteq\emptyset_{2}\)かつ\(\emptyset_{2}\subseteq\emptyset_{1}\)なので\(\emptyset_{1}=\emptyset_{2}\)となるので矛盾。
従って、背理法より\(\emptyset_{1}=\emptyset_{2}\)となり、空集合は唯1つ存在する。
ページ情報
タイトル | 空集合の定義と性質 |
URL | https://www.nomuramath.com/z4pn0ulj/ |
SNSボタン |
eの冪乗の基本
\[
e^{\alpha+\beta}=e^{\alpha}e^{\beta}
\]
4次式の点の軌跡
点$\left(t^{2}+1,t^{4}+2t^{2}\right)$の軌跡
tanの立方根の積分
\[
\int\sqrt[3]{\tan x}dx=\frac{1}{4}\log\left(\tan^{\frac{4}{3}}x-\tan^{\frac{2}{3}}x+1\right)+\frac{\sqrt{3}}{2}\tan^{\bullet}\left(\frac{2\tan^{\frac{2}{3}}x-1}{\sqrt{3}}\right)-\frac{1}{2}\log\left(\tan^{\frac{2}{3}}x+1\right)+C
\]
3角関数・双曲線関数の無限乗積展開
\[
\sin\left(\pi z\right)=\pi z\prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right)
\]