空集合の定義と性質
空集合の定義と性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
空集合の定義
要素を1つも持たない集合を空集合といい\(\emptyset\)で表す。
空集合は
\[ \emptyset=\left\{ \right\} \] である。
空集合の性質
(1)
空集合は唯1つ存在する。任意の元\(x\)に対し、\(x\notin\emptyset\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
任意の集合\(A\)に対し、\(\emptyset\subseteq A\)となる。
(1)
空集合が\(\emptyset_{1},\emptyset_{2}\)の2つあり\(\emptyset_{1}\ne\emptyset_{2}\)と仮定する。このとき、任意の集合\(A\)に対し\(\emptyset_{1}\subseteq A\)が成り立つので\(A\)に\(\emptyset_{2}\)を代入すると、\(\emptyset_{1}\subseteq\emptyset_{2}\)となる。
同様に\(\emptyset_{2}\subseteq\emptyset_{1}\)が成り立つ。
これより、\(\emptyset_{1}\subseteq\emptyset_{2}\)かつ\(\emptyset_{2}\subseteq\emptyset_{1}\)なので\(\emptyset_{1}=\emptyset_{2}\)となるので矛盾。
従って、背理法より\(\emptyset_{1}=\emptyset_{2}\)となり、空集合は唯1つ存在する。
ページ情報
タイトル | 空集合の定義と性質 |
URL | https://www.nomuramath.com/z4pn0ulj/ |
SNSボタン |
[python]if文の基本的な使い方
(*)分離公理(距離・正規・正則・T2・T1・T0・その他)同士の関係
\[
\text{距離空間}\Rightarrow\text{正規空間}\Rightarrow\text{正則空間}\Rightarrow T_{2}\text{空間}\Rightarrow T_{1}\text{空間}\Rightarrow T_{0}\text{空間}
\]
分母と分子交互に根号の総乗
\[
\prod_{k=1}^{\infty}\frac{\sqrt[2k-1]{\alpha}}{\sqrt[2k]{\alpha}}=2^{\Log\alpha}
\]
カントールの対関数の漸化式
\[
\pi\left(m,n\right)+1=\begin{cases}
\pi\left(m-1,n+1\right) & m\ne0\\
\pi\left(n+1,0\right) & m=0
\end{cases}
\]