距離空間の定義
距離空間の定義
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
(a)非退化性
\[ \forall x,y\in X,d\left(x,y\right)=0\Leftrightarrow x=y \](b)対称性
\[ \forall x,y\in X,d\left(x,y\right)=d\left(y,x\right) \](c)3角不等式
\[ \forall x,y,z\in X,d\left(x,y\right)\leq d\left(x,z\right)+d\left(z,y\right) \] また上の3つより、(d)非負性
\[ \forall x,y\in X,d\left(x,y\right)\geq0 \] が導かれる。(1)非負性の導出
任意の\(x,y\in X\)に対し、3角不等式より、\(d\left(x,x\right)\leq d\left(x,y\right)+d\left(y,x\right)\)となり、非退化性と対称性より、\(0\leq2d\left(x,y\right)\)となるので両辺を2で割って\(0\leq d\left(x,y\right)\)となる。これより、非負性を満たす。
ページ情報
タイトル | 距離空間の定義 |
URL | https://www.nomuramath.com/z8txcqf7/ |
SNSボタン |
パリ距離は距離空間
\[
d\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
\left|\boldsymbol{x}-\boldsymbol{y}\right| & \exists c\in\mathbb{R},\boldsymbol{y}=c\boldsymbol{x}\\
\left|\boldsymbol{x}\right|+\left|\boldsymbol{y}\right| & other
\end{cases}
\]
有限集合で距離化可能なのは離散位相のみ
有限位相空間では距離化可能と離散位相は同値である。
距離空間での開集合と点列の収束
完備距離空間の像は完備部分集合とは限らない
完備距離空間の像は完備部分集合とは限らない