距離空間の定義
距離空間の定義
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
空でない集合\(X\)があり、写像\(d:X\times X\rightarrow\mathbb{R}\)が以下の3条件を満たすとき、\(d\)を\(X\)の距離関数といい、\(X\)と\(d\)の組\(\left(X,d\right)\)を距離空間という。
(a)非退化性
\[ \forall x,y\in X,d\left(x,y\right)=0\Leftrightarrow x=y \](b)対称性
\[ \forall x,y\in X,d\left(x,y\right)=d\left(y,x\right) \](c)3角不等式
\[ \forall x,y,z\in X,d\left(x,y\right)\leq d\left(x,z\right)+d\left(z,y\right) \] また上の3つより、(d)非負性
\[ \forall x,y\in X,d\left(x,y\right)\geq0 \] が導かれる。(1)非負性の導出
任意の\(x,y\in X\)に対し、3角不等式より、\(d\left(x,x\right)\leq d\left(x,y\right)+d\left(y,x\right)\)となり、非退化性と対称性より、\(0\leq2d\left(x,y\right)\)となるので両辺を2で割って\(0\leq d\left(x,y\right)\)となる。これより、非負性を満たす。
ページ情報
タイトル | 距離空間の定義 |
URL | https://www.nomuramath.com/z8txcqf7/ |
SNSボタン |
離散距離は距離空間
\[
d_{\delta}\left(\boldsymbol{x},\boldsymbol{y}\right)=\begin{cases}
0 & \boldsymbol{x}=\boldsymbol{y}\\
1 & \boldsymbol{x}\ne\boldsymbol{y}
\end{cases}
\]
距離空間での連続を開近傍を使って表現
\[
\forall\epsilon>0,\exists\delta>0,f\left(U_{\delta}\left(a\right)\right)\subseteq U_{\epsilon}\left(f\left(a\right)\right)
\]
2つの距離関数と点列・開集合・閉集合の関係
距離空間では連続と点列連続は同値