チェビシェフ多項式の奇遇性
チェビシェフ多項式の奇遇性
\(n\in\mathbb{N}\)とする。
\(n\in\mathbb{N}\)とする。
(1)
\[ T_{n}(-x)=(-1)^{n}T_{n}(x) \](2)
\[ U_{n}(-x)=(-1)^{n}U_{n}(x) \](1)
\begin{align*} T_{n}(-\cos t) & =T_{n}(\cos(\pi-t))\\ & =\cos\left(n(\pi-t)\right)\\ & =\cos(n\pi)\cos(-nt)-\sin(n\pi)\sin(-nt)\\ & =(-1)^{n}\cos(nt)\\ & =(-1)^{n}T_{n}(\cos t) \end{align*} これより、\[ T_{n}(-x)=(-1)^{n}T_{n}(x) \]
(2)
\begin{align*} U_{n}(-\cos t) & =U_{n}(\cos(\pi-t))\\ & =\frac{\sin((n+1)(\pi-t))}{\sin(\pi-t)}\\ & =\frac{\sin\left((n+1)\pi\right)\cos\left(-(n+1)t\right)+\cos\left((n+1)\pi\right)\sin\left(-(n+1)t\right)}{\sin t}\\ & =\frac{(-1)^{n}\sin\left((n+1)t\right)}{\sin t}\\ & =(-1)^{n}U_{n}(\cos t) \end{align*} これより、\[ U_{n}(-x)=(-1)^{n}U_{n}(x) \]
ページ情報
タイトル | チェビシェフ多項式の奇遇性 |
URL | https://www.nomuramath.com/zlbeth48/ |
SNSボタン |
チェビシェフ多項式の別表記
\[
T_{n}(x)=\frac{1}{2}\left(\left(x+i\sqrt{1-x^{2}}\right)^{n}+\left(x-i\sqrt{1-x^{2}}\right)^{n}\right)
\]
第3種・第4種チェビシェフ多項式の漸化式
\[
V_{k+1}(x)=2xV_{k}(x)-V_{k-1}(x)
\]
チェビシェフ多項式の漸化式
\[
T_{n+1}(x)=2xT_{n}(x)-T_{n-1}(x)
\]
(*)チェビシェフ多項式のロドリゲス公式
\[
T_{n}(x)=\frac{(-1)^{n}\sqrt{\pi}\sqrt{1-x^{2}}}{2^{n}\Gamma\left(n+\frac{1}{2}\right)}\frac{d^{n}}{dx^{n}}\left(1-x^{2}\right)^{n-\frac{1}{2}}
\]