リーマン・ゼータ関数とディリクレ・イータ関数の定義
(1)リーマン・ゼータ関数
リーマン・ゼータ関数は以下で定義される。\[ \zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}} \]
(2)ディリクレ・イータ関数
ディリクレ・イータ関数は以下で定義される。\[ \eta(s)=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^{s}} \]
ページ情報
タイトル | リーマン・ゼータ関数とディリクレ・イータ関数の定義 |
URL | https://www.nomuramath.com/zomisy5e/ |
SNSボタン |
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]
すべての自然数の積(解析接続あり)
\[
\prod_{k=1}^{\infty}k=\sqrt{2\pi}
\]
フルヴィッツのゼータ関数の定義
\[
\zeta\left(s,\alpha\right)=\sum_{k=0}^{\infty}\frac{1}{\left(\alpha+k\right)^{s}}
\]
ゼータ関数の絶対収束条件
ゼータ関数$\zeta\left(s\right)$は$\Re\left(s\right)>1$で絶対収束