リーマン・ゼータ関数とディリクレ・イータ関数の定義
(1)リーマン・ゼータ関数
リーマン・ゼータ関数は以下で定義される。\[ \zeta(s)=\sum_{k=1}^{\infty}\frac{1}{k^{s}} \]
(2)ディリクレ・イータ関数
ディリクレ・イータ関数は以下で定義される。\[ \eta(s)=\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k^{s}} \]
ページ情報
タイトル | リーマン・ゼータ関数とディリクレ・イータ関数の定義 |
URL | https://www.nomuramath.com/zomisy5e/ |
SNSボタン |
フルヴィッツ・ゼータ関数の乗法定理
\[
n^{s}\zeta\left(s,nz\right)=\sum_{k=0}^{n-1}\zeta\left(s,z+\frac{k}{n}\right)
\]
リーマン・ゼータ関数とフルヴィッツ・ゼータ関数のハンケル経路積分
\[
\zeta\left(s,\alpha\right)=-\frac{\Gamma\left(1-s\right)}{2\pi i}\int_{C}\frac{\left(-z\right)^{s-1}e^{-\alpha z}}{1-e^{-z}}dz
\]
(*)フルヴィッツの公式
\[
\zeta\left(1-s,a\right)=\frac{\Gamma\left(s\right)}{\left(2\pi\right)^{s}}\left\{ e^{-i\frac{\pi s}{2}}\Li_{s}\left(e^{2\pi ia}\right)+e^{i\frac{\pi s}{2}}\Li_{s}\left(e^{-2\pi ia}\right)\right\}
\]
リーマン・ゼータ関数(フルヴィッツ・ゼータ関数)のローラン展開時のスティルチェス定数(一般化スティルチェス定数)
\[
\gamma_{k}=\lim_{n\rightarrow\infty}\left(\left(\sum_{j=1}^{n}\frac{\log^{k}j}{j}\right)-\frac{\log^{k+1}n}{k+1}\right)
\]