ウォリス積分を含む極限
ウォリス積分を含む極限値
(1)
\[ \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta=\sqrt{\frac{\pi}{2}} \](2)
\[ \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta=\sqrt{\frac{\pi}{2}} \](1)
\begin{align*} \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\theta d\theta & =\frac{1}{2}\lim_{n\rightarrow\infty}\sqrt{n}B\left(\frac{n+1}{2},\frac{1}{2}\right)\\ & =\frac{1}{2}\lim_{n\rightarrow\infty}\sqrt{n}\frac{\Gamma\left(\frac{n+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}\\ & =\frac{\sqrt{\pi}}{2}\lim_{n\rightarrow\infty}\sqrt{\sqrt{n}\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n+2}{2}\right)}\sqrt{n+1}\frac{\Gamma\left(\frac{n+2}{2}\right)}{\Gamma\left(\frac{n+3}{2}\right)}}\\ & =\frac{\sqrt{\pi}}{2}\lim_{n\rightarrow\infty}\sqrt{\sqrt{n}\sqrt{n+1}\frac{2}{n+1}}\\ & =\sqrt{\frac{\pi}{2}}\lim_{n\rightarrow\infty}\sqrt{\frac{1}{\sqrt{1+\frac{1}{n}}}}\\ & =\sqrt{\frac{\pi}{2}} \end{align*}(2)
\begin{align*} \lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\cos^{n}\theta d\theta & =\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}\left(\frac{\pi}{2}-\theta\right)d\theta\\ & =\lim_{n\rightarrow\infty}\sqrt{n}\int_{0}^{\frac{\pi}{2}}\sin^{n}tdt\qquad,\qquad t=-\theta+\frac{\pi}{2}\\ & =\sqrt{\frac{\pi}{2}} \end{align*}ページ情報
タイトル | ウォリス積分を含む極限 |
URL | https://www.nomuramath.com/zotvfo8k/ |
SNSボタン |
ウォリスの公式
\[
\prod_{k=1}^{\infty}\left(\frac{(2k)^{2}}{(2k-1)(2k+1)}\right)=\frac{\pi}{2}
\]
数列の極限
コーシーの関数方程式と関数方程式の基本
\[
f(x+y)=f(x)+f(y)
\]
ベルヌーイ数とリーマンゼータ関数
\[
B_{2n}=(-1)^{n+1}\frac{2(2n)!}{(2\pi)^{2n}}\zeta(2n)
\]